全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

竖向荷载作用下黄茅根系抗拔承载力试验分析
Experimental Analysis of the Tension Bearing Capacity of Heteropogon contortus Roots Under Vertical Load

DOI: 10.13718/j.cnki.xdzk.2018.08.021

Keywords: 黄茅, 抗拔承载力, 拟合, 幂函数, 线性函数
Heteropogon contortus
, tension bearing capacity, fitting, power function, linear function

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探索整株植物的抗拔承载力与生物量指标之间的关系,以黄茅为研究对象,采用直接施加竖向荷载的方法进行了野外原位抗拔承载力试验,获得了黄茅的分枝数、根系质量、地上部分质量、根冠比等生物量指标以及整株植物的抗拔承载力等力学指标,采用数理统计方法对黄茅的生物量指标和力学指标进行分析,得到这些指标值的变化区间和分布频率.试验结果表明:有73%的黄茅分枝数低于50个,根系质量和地上部分质量分别集中在0~40 g和0~100 g,69%的黄茅根冠比小于1,根系抗拔承载力集中在200~600 N.黄茅的根系抗拔承载力与根系质量、分枝数、地上部分质量有关,随着分枝数增多,根系质量和地上部分质量增加,根系抗拔承载力也随之增加,通过数据拟合,根系抗拔承载力与根系质量呈幂函数相关关系,与分枝数和地上部分质量呈线性函数相关关系.
In an in-situ pullout test carried out in the field, the method of direct vertical load was applied to Heteropogon contortus to explore the relationship between the tension bearing capacity of the whole plant and the biomass indexes. The biomass indexes of the plant such as branch number, root mass, shoot mass and root-shoot ratio and the mechanics indexes such as bearing capacity were obtained. These indexes were analyzed with the method of mathematical statistics, and their change intervals and distribution frequencies were obtained. The results showed that about 73 percent of the plants had a branch number of < 50, their root mass and shoot mass were mostly distributed in the range of 0-40 and 0-100, respectively, about 69 percent of the of the plants had a root-shoot ratio of < 1, and the tension bearing capacity was mostly in the range of 200-600. The tension bearing capacity of H. contortus was associated with branch number, root mass and shoot mass. The tension bearing capacity of the root system increased with the increase in branch number, root mass and shoot mass of the plant. Data fitting showed a power function correlation between tension bearing capacity and root mass and a linear function correlation between tension bearing capacity and branch number or shoot mass

References

[1]  李绍才, 孙海龙, 杨志荣, 等. 护坡植物根系与岩体相互作用的力学特性[J]. 岩石力学与工程学报, 2006, 25(10): 2051-2057. DOI:10.3321/j.issn:1000-6915.2006.10.016
[2]  ROERING JJ, STOCK J D, SCHMIDT K M, et al. Shallow Landsliding, Root Reinforcement, and the Spatial Distribution of Trees in the Oregon Coast Range[J]. Canadian Geotechnical Journal, 2003, 40(2): 237-253. DOI:10.1139/t02-113
[3]  程洪, 颜传盛, 李建庆, 等. 草本植物根系网的固土机制模式与力学试验研究[J]. 水土保持研究, 2006, 13(1): 62-65.
[4]  陈丽华, 及金楠, 冀晓东, 等. 林木根系基本力学性质[M]. 北京: 科学出版社, 2012.
[5]  李长暄, 陈丽华, 周娟, 等. 蒙古栎根系单根抗拉力学特性[J]. 水土保持通报, 2014, 34(4): 232-235.
[6]  方海东, 段昌群, 纪中华, 等. 金沙江干热河谷自然恢复区植物种群生态位特征[J]. 武汉大学学报(理学版), 2008, 54(2): 177-182.
[7]  黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.
[8]  李绍才, 孙海龙, 杨志荣. 坡面岩体-基质-根系互作的力学特性[J]. 岩石力学与工程学报, 2005, 24(12): 2074-2081. DOI:10.3321/j.issn:1000-6915.2005.12.012
[9]  唐庄生, 安慧, 上官周平. 荒漠草原沙漠化对土壤养分与植被根冠比的影响[J]. 草地学报, 2015, 23(3): 463-468. DOI:10.11733/j.issn.1007-0435.2015.03.005
[10]  NG C WW, LIU H W, FENG S. Analytical Solutions for Calculating Pore-Water Pressure in an Infinite Unsaturated Slope with Different Root Architectures[J]. Canadian Geotechnical Journal, 2015, 52(12): 1981-1992. DOI:10.1139/cgj-2015-0001
[11]  GHESTEM M, SIDLE R C, STOKES A. The Influence of Plant Root Systems on Subsurface Flow:Implications for Slope Stability[J]. Bioscience, 2011, 61(11): 869-879. DOI:10.1525/bio.2011.61.11.6
[12]  周园园, 谢世友, 柳芬. 渝贵交界地区低中上土壤颗粒分形特征研究-以贵州遵义习水县寨坝镇为例[J]. 西南大学学报(自然科学版), 2016, 38(6): 118-122.
[13]  李臻, 余芹芹, 杨占风, 等. 西宁盆地两种灌木植物原位拉拔试验及其护坡效应[J]. 水土保持研究, 2011, 18(3): 206-209.
[14]  胡夏嵩, 陈桂琛, 周国英, 等. 青藏铁路沱沱河段路基边坡植物护坡根系力学强度试验研究[J]. 水文地质工程地质, 2012, 39(1): 107-113.
[15]  NELSON N D, BURK T, ISEBRANDS J G. Crown Architecture of Shortrotation, Intensively Cultured Populus:Effects of Clone and Spacing on First-Order Branch Characteristics[J]. Canada Journal of Forest Research, 1981, 11(1): 73-81. DOI:10.1139/x81-010
[16]  郇慧慧, 胥晓, 刘刚, 等. 不同分枝数对桑树幼苗生长发育的影响[J]. 生态学报, 2014, 34(4): 823-831.
[17]  韩烈保, 王琼, 王晓蓓, 等. 不同立地条件下荆条根系分布规律[J]. 应用基础与工程科学学报, 2009, 17(2): 231-237.
[18]  张韫. 土壤·水·植物-理化分析教程[M]. 北京: 中国林业出版社, 2011.
[19]  中华人民共和国水利部. 土工试验方法标准: GB/T50123-1999[S]. 北京: 中国计划出版社, 1999: 10.
[20]  YU Dong-sheng, SHI Xue-zheng, WEINDORF D C. Relationships Between Permeability and Erodibility of Cultivated Acrisols and Cambisols in Subtropical China[J]. Pedosphere, 2006, 16(3): 304-311. DOI:10.1016/S1002-0160(06)60056-8
[21]  言志信, 宋杰, 蔡汉成, 等. 草本植物加固边坡的力学原理[J]. 土木建筑与环境工程, 2010, 32(2): 30-34. DOI:10.11835/j.issn.1674-4764.2010.02.007
[22]  朱海丽, 毛小青, 倪三川, 等. 植被护坡研究进展与展望[J]. 中国水土保持, 2007(4): 26-29.
[23]  LIFFENA T, GURNELL A M, O'HARE M T, et al. Biomechanical Properties of the Emergent Aquatic Macrophyte Sparganium Erectum:Implications for Fine Sediment Retention in Low Energy Rivers[J]. Ecological Engineering, 2011, 37(11): 1925-1931. DOI:10.1016/j.ecoleng.2011.06.015
[24]  孙丽文, 史常青, 赵廷宁, 等. 北川县4个树种根系抗拉特性研究[J]. 四川农业大学学报, 2014, 32(1): 34-40, 58.
[25]  张云伟, 惠尚, 卜晓磊, 等. 3种散生竹的单根抗拉力学特性[J]. 林业科学, 2013, 49(7): 183-187. DOI:10.11707/j.1001-7488.20130727
[26]  刘昌义, 胡夏嵩, 赵玉娇, 等. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究[J]. 工程地质学报, 2017, 25(1): 1-10.
[27]  贺振昭, 党生, 刘昌义, 等. 青海湖地区草本植物根系力学特性试验研究[J]. 中国水土保持, 2017(4): 44-48.
[28]  王大伟, 孙帅, 刘金平, 等. 坡向对退化冷季型护坡草坪中植物种类及多样性的影响[J]. 草学, 2017(1): 40-44, 48.
[29]  王英宇, 宋桂龙, 孟强, 等. 不同立地条件下野生荆条与胡枝子根系生长特性的比较研究[J]. 水土保持通报, 2010, 30(4): 94-98.
[30]  罗春燕, 吴楚, 芦光新, 等. 三江源区植物根-土复合体的抗拉拔力特征及影响因素分析[J]. 水土保持研究, 2014, 21(5): 260-266, 271.
[31]  董世青, 李家纳, 梁颖, 等. 云南超高产区甘蓝型油菜产量及相关特性研究[J]. 西南大学学报(自然科学版), 2017, 39(3): 17-22.
[32]  WILSON J B. Shoot Competition and Root Competition[J]. J Appl Ecol, 1988, 25(1): 279-296. DOI:10.2307/2403626
[33]  杨婷婷, 高永, 吴新宏, 等. 小针茅草原植被地下与地上生物量季节动态及根冠比变化规律[J]. 干旱区研究, 2013, 30(1): 109-114.
[34]  马安娜, 于贵瑞, 何念鹏, 等. 中国草地植被地上和地下生物量的关系分析[J]. 第四纪研究, 2014, 34(4): 769-776.
[35]  石庆华, 黄英金, 李木英, 等. 水稻根系性状与地上部的相关性及根系性状的遗传研究[J]. 中国农业科学, 1997, 30(4): 61-67.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133