全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

保持等价关系的变换半群的组合结果
A Combinatorial Result for Certain Semigroups of Transformations Preserving an Equivalence Relation

DOI: 10.13718/j.cnki.xdzk.2018.08.011

Keywords: 变换半群, 等价关系, 正则元, 组合数
transformation semigroup
, equivalence, regular element, combinatorial result

Full-Text   Cite this paper   Add to My Lib

Abstract:

$设$ \mathscr{T}_X $是非空集合X上的全变换半群,EX上的(nm)-型等价关系,则 $ {T_E}\left( X \right) = \left\{ {f \in {\mathscr{T}_X }:\forall x, y \in X, \left( {x, y} \right) \in E \Rightarrow \left( {f\left( x \right), f\left( y \right)} \right) \in E} \right\} $ 是$ \mathscr{T}_X $的子半群.计算了变换半群TEX)的基数,并且在n=2,m ≥ 2和n=3,m ≥ 2的条件下,分别给出了TEX)的正则元个数的计算公式.$
$Let $\mathscr{T}_X $ be a full transformation semigroup on the nonempty set X, and E be an (n, m)-type equivalence relation on X. Then $ {\mathscr T_E}\left( X \right) = \left\{ {f \in {\mathscr{T}_X }:\forall x, y \in X, \left( {x, y} \right) \in E \Rightarrow \left( {f\left( x \right), f\left( y \right)} \right) \in E} \right\} $ is a subsemigroup of TX. In this paper, we calculate the cardinality of the semigroup TE(X) and present a formula for the number of its regular elements under the supposition that n=2, m ≥ 2 and n=3, m ≥ 2.

References

[1]  高荣海, 徐波. 核具有连续横截面的保序变换半群的秩[J]. 西南师范大学学报(自然科学版), 2013, 38(4): 18-24.
[2]  PEI H S. On the Rank of the Semigroup TE(X)[J]. Semigroup Forum, 2005, 70(1): 107-117. DOI:10.1007/s00233-004-0135-z
[3]  SUN L, PEI H S, CHENG Z X. Naturally Ordered Transformation Semigroups Preserving an Equivalence[J]. Bulletin of the Australian Mathematical Society, 2008, 78(2): 117-128.
[4]  LARADJI A, UMAR A. Combinatorial Results for Semigroups of Order-Preserving Partial Transformations[J]. Journal of Algebra, 2004, 278(1): 342-359. DOI:10.1016/j.jalgebra.2003.10.023
[5]  邓伟娜, 裴惠生. 一类变换半群中幂等元的中心化子[J]. 西南大学学报(自然科学版), 2013, 35(2): 55-61.
[6]  PEI H S. Equivalences, α-Semigroups and α-Congruences[J]. Semigroup Forum, 1994, 49(1): 49-58. DOI:10.1007/BF02573470
[7]  PEI H S. Regularity and Green's Relations for Semigroups of Transformations That Preserve an Equivalence[J]. Communications in Algebra, 2005, 33(1): 109-118. DOI:10.1081/AGB-200040921
[8]  LARADJI A, UMAR A. Combinatorial Results for Semigroups of Order-Preserving Full Transformations[J]. Semigroup Forum, 2006, 72(1): 51-62. DOI:10.1007/s00233-005-0553-6
[9]  FERNANDES V H, GRACINDA M S G, JESUS M M. The Cardinal and the Idempotent Number of Various Monoids of Transformations on a Finite Chain[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2011, 34(1): 79-85.
[10]  FERNANDES V H, QUINTEIRO T M. The Cardinal of Various Monoids of Transformations That Preserve a Uniform Partition[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2012, 35(4): 885-896.
[11]  SUN L. Combinatorial Results for Certain Semigroups of Transformations Preserving Orientation and a Uniform Partition[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2013, 36(1): 179-192.
[12]  ZHANG J, LUO Y F. On Certain Order-Preserving Transformation Semigroups[J]. Communications in Algebra, 2017, 45(7): 2980-2995. DOI:10.1080/00927872.2016.1233333
[13]  PEI H S, ZHOU H J. Abundant Semigroups of Transformations Preserving an Equivalence Relation[J]. Colloquium Algebra, 2011, 18(1): 77-82. DOI:10.1142/S1005386711000034

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133