|
- 2018
百脉根无效根瘤突变体的生物量及无效根瘤的电镜观察分析
|
Abstract:
百脉根是研究豆科植物根瘤形成和共生固氮分子机理的一种重要模式植物.为探索百脉根根瘤的形成机制,以EMS诱导野生MG-20突变并筛选的No.1006,No.486和No.2568等3种无效根瘤突变体为材料,测定其突变体植株生物量、根瘤数及固氮能,并对无效根瘤中根瘤菌感染的细胞进行电镜观察.结果表明:No.1006是根瘤原基突变体,No.486是白色无效根瘤突变体,No.2568是绿色无效根瘤突变体;这3种无效根瘤突变体植株生长至30 d时,根瘤数和固氮能以及株高、地上部干质量、根干质量和根长等生物量与MG-20野生株差异无统计学意义(p>0.05),但生长至40 d开始均显著低于野生株(p < 0.05).No.486的白色无效根瘤和No.2568的绿色无效根瘤,经切片后在电镜下观察,无效根瘤细胞均存在不同程度的破坏;其中No.2568的绿色无效根瘤的细胞和由根瘤菌转化来的类菌体的破坏程度远大于No.486的白色根瘤.
Lotus japonicus is one of the important model plants in exploring the mechanism of nodule formation and symbiotic nitrogen fixation of legumes. In order to elucidate the mechanism of nodule formation in L. japonicus and the early aging of its ineffective nodules, three kinds of ineffective nodule mutants (No.1006, No.486 and No.2568) obtained from EMS-treated MG-20 seeds were used as the experiment materials, and phenotypic analysis and determination of nitrogen fixation capacity of their ineffective nodules were carried out, and rhizobia-infected cells of the nodules were observed with an electron microscope. The results showed that No.1006 was a nodule primordium mutant, No.486 a white nodule mutant and No.2568 a green nodule mutant. The number of nodules and their nitrogen fixation capacity as well as plant height, shoot dry weight, root dry weight and root length for these mutants were not significantly different from those of the wild type plant in the first 30 days of growth (p>0.05), but were significantly lower than the wild type plant after 40 days of growth (p < 0.05). Electron microscopic examination revealed that the cells of ineffective nodules of mutants No.486 and No.2568 were damaged to varying degrees; and that cells and bacterioids in the green ineffective nodules of No.2568 were more seriously damaged than those of the white ineffective nodules of No.486
[1] | 李春明, 张磊, 徐征, 等. 根际联合固氮菌对玉米小麦及红薯的增产效应[J]. 西南农业大学学报, 2003, 25(6): 506-509. |
[2] | 王园春. 大豆根瘤菌共生基因的筛选以及三型分泌系统效应分子的鉴定[D]. 北京: 中国农业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10019-1015717653.htm |
[3] | SUGANUMA N, NAKAMURA Y, YAMAMOTO M, et al. The Lotus japonicus Sen1 Gene Controls Rhizobial Differentiation Into Nitrogen-Fixing Bacteroids in Nodules[J]. Molecular Genetics and Genomics, 2003, 269(3): 312-320. DOI:10.1007/s00438-003-0840-4 |
[4] | MORZHINA E V, TSYGANOV V E, BORISOV A Y, et al. Four Developmental Stages Identified by Genetic Dissection of Pea (Pisum sativum L.) Root Nodule Morphogenesis[J]. Plant Science, 2000, 155(1): 75-83. DOI:10.1016/S0168-9452(00)00207-7 |
[5] | TU J C. Rhizobial Root Nodules of Soybean as Revealed by Scanning and Transmission Electron Microscopy[J]. Phytopathology, 1975, 65(4): 447-454. DOI:10.1094/Phyto-65-447 |
[6] | IMAIZUMIANRAKU H, KAWAGUCHI M, KOIWA H, et al. Two Ineffective-Nodulating Mutants of Lotus japonicus-Different Phenotypes Caused by the Blockage of Endocytotic Bacterial Release and Nodule Maturation[J]. Plant Cell Physiology, 1997, 38(7): 871-881. DOI:10.1093/oxfordjournals.pcp.a029246 |
[7] | BANBA M, SIDDIQUE A B, KOUCHI H, et al. Lotus japonicus forms Early Senescent Root Nodules with Rhizobium etli[J]. Molecular Plant-Microbe Interactions, 2001, 14(2): 173-180. DOI:10.1094/MPMI.2001.14.2.173 |
[8] | KUMAGAI H, HAKOYAMA T, UMEHARA Y, et al. A Novel Ankyrin-Repeat Membrane Protein, IGN1, is Required for Persistence of Nitrogen-Fixing Symbiosis in Root Nodules of Lotus japonicus[J]. Plant Physiology, 2007, 143(3): 1293-1305. DOI:10.1104/pp.106.095356 |
[9] | KAWAGUCHI M, IMAIZUMI-ANRAKU H, KOIWA H, et al. Root, Root Hair, and Symbiaotic Mutants of the Model Legume Lotus japonicus[J]. Molecular Plant-Microbe Interactions, 2002, 15(1): 17-26. DOI:10.1094/MPMI.2002.15.1.17 |
[10] | SUGANUMA N, NAKAMURA Y, YAMAMOTO M, et al. The Lotus japonicus Sen1 Gene Controls Rhizobial Differentiation Into Nitrogen-Fixing Bacteroids in Nodules[J]. Molecular Genetics and Genomics, 2003, 269(3): 312-320. DOI:10.1007/s00438-003-0840-4 |
[11] | 甄安忠, 何文高, 陈懿, 等. 施氮量和留叶数对烤烟K326碳代谢和品质的影响[J]. 西南大学学报(自然科学版), 2016, 38(9): 20-25. |
[12] | 蒲强, 谭志远, 彭桂香, 等. 根瘤菌分类的新进展[J]. 微生物学通报, 2016, 43(3): 619-633. |
[13] | LEROUGE P, ROCHE P, FAUCHER C, et al. Symbiotic Host-Specificity of Rhizobium-Meliloti is Determined by a Sulfated and Acylated Glucosamine Oligosaccharide Signal[J]. Nature, 1990, 344(6268): 781-784. DOI:10.1038/344781a0 |
[14] | MADSEN E B, MADSEN L H, RADUTOIU S, et al. A Receptor Kinase Gene of the LysM Type is Involved in Legume Perception of Rhizobial Signals[J]. Nature, 2003, 425(6958): 637-640. DOI:10.1038/nature02045 |
[15] | IMAIZUMIANRAKU H, KOUCHI H, SYONO K, et al. Analysis of Enod40 Expression in Alb1, a Symbiotic Mutant of Lotus japonicus That Forms Empty Nodules with Incompletely Developed Nodule Vascular Bundles[J]. Molecular and General Genetics, 2000, 264(4): 402-410. DOI:10.1007/s004380000330 |
[16] | HOSSAIN M S, UMEHARA Y, KOUCHI H, et al. A Novel Fix-Symbiotic Mutant of Lotus Japonicus, Ljsym105, Shows Impaired Development and Premature Deterioration of Nodule Infected Cells and Symbiosomes[J]. Molecular Plant-Microbe Interactions, 2006, 19(7): 780-788. DOI:10.1094/MPMI-19-0780 |
[17] | 车成来, 金龙哲, 林花, 等. 利用EMS筛选豆科模式植物百脉根的根瘤突变体及突变部位[J]. 延边大学农学学报, 2016, 38(3): 235-241. |
[18] | BROUGHTON W J, DILWORTH M Y. Control of Leghaemoglobin Synthesis in Snake Beans[J]. Biochemical Journal, 1971, 125(4): 1075-1080. DOI:10.1042/bj1251075 |
[19] | NOVáK K, PE?INA K, NEBESáROVá J, et al. Symbiotic Tissue Degradation Pattern in the Ineffective Nodules of 3 Nodulation Mutants of Pea(Pisum-Sativum L)[J]. Annals of Botany, 1995, 76(3): 303-313. DOI:10.1006/anbo.1995.1100 |
[20] | SAGAN M, DUC G. Sym28 and Sym29, Two New Genes Involved in Regulation of Nodulation in Pea (Pisum sativum L)[J]. Symbiosis, 1996, 20(3): 229-245. |
[21] | OOKI Y, BANAB M, YANO K, et al. Characterization of the Lotus japonicus Symbiotic Mutant Lot1 That Shows a Reduced Nodule Number and Distorted Trichomes[J]. Plant Physiology, 2005, 137(4): 1261-1271. DOI:10.1104/pp.104.056630 |
[22] | ISHIKAWA K, YOKOTA K, LI Y Y, et al. Isolation of a Novel Root-Determined Hypernodulation Mutant Rdh1 of Lotus japonicus[J]. Soil Science and Plant Nutrition, 2008, 54(2): 259-263. DOI:10.1111/j.1747-0765.2007.00240.x |
[23] | SCHAUSER L, HANDBERG K, SANDAL N, et al. Symbiotic Mutants Deficient in Nodule Establishment Identified After T-DNA Transformation of Lotus japonicus[J]. Molecular General Genetics, 1998, 259(4): 414-423. DOI:10.1007/s004380050831 |
[24] | HERRIDGE D F, PEOPLES M B, BODDEY R M. Global Inputs of Biological Nitrogen Fixation in Agricultural Systems[J]. Plant Soil, 2008, 311(1): 1-18. |
[25] | VANCE C P, EGLI M A, GRIFFITH S M, et al. Plant Regulated Aspects of Nodulation and N2 Fixation[J]. Plant Cell and Environment, 1988, 11(5): 413-427. DOI:10.1111/pce.1988.11.issue-5 |
[26] | BORISOV A Y, MORZHINA E V, KULIKOVA O A, et al. New Symbiotic Mutants of Pea (Pisum-Sativum L) Affecting Either Nodule Initiation or Symbiosome Development[J]. Symbiosis, 1993, 14(1-3): 297-313. |
[27] | SUGANUMA N, SONODA N, NAKANE C, et al. Bacteroids Isolated from Ineffective Nodules of Pisum sativum Mutant E135(sym13) Lack Nitrogenase Activity But Contain the Two Protein Components of Nitrogenase[J]. Plant and Cell Physiology, 1998, 39(10): 1093-1098. DOI:10.1093/oxfordjournals.pcp.a029307 |
[28] | STOUGAARD J. Regulators and Regulation of Legume Root Nodule Development[J]. Plant Physiology, 2000, 124(2): 531-540. DOI:10.1104/pp.124.2.531 |