|
- 2018
月季RhPR10.2基因克隆及生物学功能分析
|
Abstract:
为解析月季PR-10家族基因RhPR10.2在月季花瓣衰老中的生物学功能,采用Real-Time PCR、RACE PCR、异源过表达、VIGS(病毒诱导的基因沉默)等生物技术方法,分析了月季RhPR10.2基因在月季不同开放阶段花瓣中的表达谱,克隆了RhPR10.2基因全长,构建了pSuper1300-RhPR10.2异源过表达载体以及pTRV2-RhPR10.2 VIGS载体.结果表明,RhPR10.2基因的表达受月季花瓣衰老显著诱导,其开放阅读框为483 bp,编码160个氨基酸,含有PR-10家族特有的P-loop基序;蛋白分子式为C796H1250N204O239S2,分子量为17 566.02,等电点(pI)为6.07;RhPR10.2蛋白与葡萄VvPR10.1亲缘关系最近;与拟南芥野生型植株(WT)相比,异源过表达RhR10.2基因的拟南芥T2代纯合子植株表现出显著延迟叶片衰老的表型,伴随着更高的叶绿素含量以及更低的离子渗透率;此外,与TRV2对照相比,沉默RhPR10.2基因的月季花瓣表现出加速衰老的表型,伴随着更高的离子渗透率以及衰老marker基因RhSAG12的表达.
In order to understand the role of PR-10 family gene RhPR10.2 in the regulation of rose petal senescence, real time PCR was used to explore the expression of RhPR10.2 in rose petals of different opening stages, RACE PCR was used for cloning the full length of RhPR10.2. In addition, pSuper1300-RhPR10.2 and pTRV2-RhPR10.2 vectors were constructed for the analysis of the biological function of RhPR10.2. The results showed that the expression of RhPR10.2 was significantly induced by rose petal senescence. Its open reading frame was 483 bp, encoding a protein of 160 amino acids. RhPR10.2 protein had a typical P-loop motif which was conserved in PR-10 protein family. The molecular formula of this protein was C796H1250N204O239S2, with a molecular weight of 17 566.02, and a theoretical pI of 6.07. Phylogenetic tree analysis suggested that RhPR10.2 had the highest similarity with Vitisvinifera VvPR10.1. To evaluate the biological role of RhPR10.2, transgenic arabidopsis (Arabidopsis thaliana) was observed. Compared with wild type (WT), RhPR10.2 transgenic T2 plants showed that the senescence of leaves was significantly delayed, accompanying with marked higher content of chlorophyll and significant lower ion leakage. On the contrary, compared with TRV2 control, RhPR10.2 gene silence markedly promoted rose petal senescence, accompaniying with significant higher ion leakage and senescence marker gene RhSAG12 expression
[1] | 白双义, 刘青林. 月季切花不同品种衰老征兆及瓶插寿命的比较[J]. 园艺学报, 2001, 28(4): 364-366. |
[2] | 李永红, 张常青, 谭辉, 等. 抗氧化剂对月季切花失水胁迫耐性和SOD、POD活性的影响[J]. 中国农业大学学报, 2003, 8(5): 14-17. |
[3] | HOFFMANN-SOMMERGRUBER K, VANEK-KREBITZ M, RADAUER C, et al. Genomic Characterization of Members of The Bet v 1 Family:Genes Coding For Allergens and Pathogenesis-Related Proteins Share Intron Positions[J]. Gene, 1997, 197(1-2): 91-100. DOI:10.1016/S0378-1119(97)00246-1 |
[4] | WAN C, WILKINS T A. A Modified Hot Borate Method Significantly Enhances The Yieldof High-Quality RNA From Cotton (Gossypiumhirsutum L.)[J]. AnalChem, 1994, 223(1): 7-12. |
[5] | CLOUGH S H, BENT A F. Floral Dip:ASimplified Method forAgrobacterium-Mediated Transformation ofArabidopsis thaliana[J]. Plant J, 2010, 16(6): 735-743. |
[6] | 李胜, 黄时海, 张艳, 等. 水牛STAT5a和STAT5b基因启动子克隆及其活性分析[J]. 西南大学学报(自然科学版), 2018, 40(1): 1-8. |
[7] | PASTERNAK O, BUJACZ G D, FUJIMOTO Y, et al. Crystal Structure of Vigna Radiata Cytokinin-Specific Binding Protein in Complex with Zeatin[J]. Plant Cell, 2006, 18(10): 2622-2634. DOI:10.1105/tpc.105.037119 |
[8] | BUFE A, SPANGFORT M D, KAHLERT H, et al. The Major Birch Pollen Allergen, Bet v 1, Shows Ribonuclease Activity[J]. Planta, 1996, 199(3): 413-415. |
[9] | WALLTER M H, LIU J, WUNN J, et al. Bean Ribonuclease-Like Pathogenesis-Related Protein Genes (Yprl0) Display Complex Patterns of Developmental, Dark-Induced and Exogenous-Stimulus-Dependent Expression[J]. Eur. J. Biochem, 2010, 239(2): 271-293. |
[10] | SRIVASTAVA S, EMERY R J N, KUREPIN L V, et al. PeaPR 10.1Is ARibonucleaseand Its Transgenic Expression Elevates CytokininLevels[J]. Plant Growth Regul, 2006, 49(1): 17-25. DOI:10.1007/s10725-006-0022-6 |
[11] | MAYAK S, LEGGE RL, THOMPSON JE. Superoxide Radical Production by Microsomal Membranes from Senescing Carnation Flowers:An Effect of Membrane Fluidity[J]. Phytochemistry, 1983, 22(6): 1375-1380. DOI:10.1016/S0031-9422(00)84018-2 |
[12] | XU T, ZHAO X, JIAO Y, et al. A Pathogenesis Related Protein, VpPR-10.1, From Vitis Pseudoreticulata:An Insight of Its Mode of Antifungal Activity[J]. Plos One, 2014, 9(4): e95102. DOI:10.1371/journal.pone.0095102 |
[13] | SRIVASTAVA S, EMERY R J N, RAHMAN M H, et al. A Crucial Role for Cytokininsin Pea ABR17-Mediated Enhanced Germination and Early Seedling Growth of Arabidopsis thaliana under Saline and Low-Temperature Stresses[J]. J Plant Growth Regul, 2007, 26(1): 26-37. DOI:10.1007/s00344-006-0046-1 |
[14] | JAIN S, SRIVASTAVA S, SARIN N B, et al. Proteomics Reveals Elevated Levels of PR 10 Proteins in Saline-Tolerant Peanut (Arachishypogaea) Calli[J]. Plant PhysiolBiochem, 2006, 44(4): 253-259. |
[15] | FERNANDES H, PASTERNAK O, BUJACZ G, et al. Lupinus Luteus Pathogenesis-Related Protein as AReservoir for Cytokinin[J]. J MolBiol, 2008, 378(5): 1040-1051. DOI:10.1016/j.jmb.2008.03.027 |
[16] | CHOI D S, HWANG I S, HWANG B K. Requirement of The Cytosolic Interaction Between PATHOGENESIS-RELATED PROTEIN10 and LEUCINE-RICH REPEAT PROTEIN1 for Cell Death and Defense Signaling in Pepper[J]. Plant Cell, 2012, 24(4): 1675-1690. DOI:10.1105/tpc.112.095869 |
[17] | MA N, CAI L, LU W J, et al. Exogenous Ethylene Influences Flower Opening of Cut Roses (Rosa hybrida) by Regulating The Genes Encoding Ethylene Biosynthesis Enzymes[J]. Science in China Series C, 2005, 48(5): 434-444. DOI:10.1360/062004-37 |
[18] | WU L, MA N, JIA Y C, et al. An Ethylene-Induced Regulatory Module Delays Flower Senescence by Regulating Cytokinin Content[J]. Plant Physiol, 2016, 173(1), pp. 01064. |
[19] | MA N, TAN H, LIU X, et al. Transcriptional Regulation of Ethylene Receptor and CTR Genes Involved in Ethylene-Induced Flower Opening in Cut Rose (Rosa hybrida) cv. Samantha[J]. J Exp Bot, 2006, 57(11): 2763-2773. DOI:10.1093/jxb/erl033 |
[20] | MENG Y, MA N, ZHANG Q, et al. Precise Spatio-Temporal Modulation of ACC Synthase by MPK6 Cascade Mediates the Response of Rose Flowers to Rehydration[J]. Plant J, 2014, 79(6): 941-950. DOI:10.1111/tpj.12594 |
[21] | LUO J, M AN, PEI H X, et al. A DELLA Gene, RhGAI1, Is ADirect Target of EIN3 and Mediates Ethylene-Regulated Rose Petal Cell Expansion via Repressing The Expression of RhCesA2[J]. J Exp Bot, 2013, 64(16): 5075-5084. DOI:10.1093/jxb/ert296 |
[22] | 高俊平, 孙自然, 周山涛. 我国鲜切花远距离流通中减少损耗的基本途径[J]. 北京农业大学学报, 1995, 21(S1): 84-88. |
[23] | JIN J, SHAN N, MA N, et al. Regulation of AscorbatePeroxidase at The Transcript Level Is Involved in Tolerance to Postharvest Water Deficit Stress in The Cut Rose (Rosa hybrida L.) cv. Samantha[J]. Postharvest Biol Tec, 2006, 40(3): 236-243. DOI:10.1016/j.postharvbio.2006.01.014 |
[24] | 赵佳福, 苟维胜, 段志强, 等. 从江香猪LMF1基因的克隆、亚细胞定位及组织表达研究[J]. 西南大学学报(自然科学版), 2017, 39(12): 38-43. |
[25] | TAN H, LIU X, MA N, et al. Ethylene-Influenced Flower Opening and Expression of Genes EncodingEtrs, Ctrs, and Ein3sin Two Cut Rose Cultivars[J]. Postharvest Biol Tec, 2006, 40(2): 97-105. DOI:10.1016/j.postharvbio.2006.01.007 |
[26] | 高俊平. 观赏植物采后生理与技术[M]. 北京: 中国农业大学出版社, 2002: 14-75. |
[27] | LIU D, LIU X, MENG Y, et al. An Organ-Specific Role for Ethylene in Rose Petal Expansion during Dehydration and Rehydration[J]. J Exp Bot, 2013, 64(8): 2333-2344. DOI:10.1093/jxb/ert092 |
[28] | LV P T, ZHANG C Q, LIU J, et al. RhHB1 Mediates The Antagonism of Gibberellins to ABA and Ethylene during Rose (Rosa hybrida) Petal Senescence[J]. Plant J, 2014, 78(4): 578-590. DOI:10.1111/tpj.12494 |
[29] | ROGERS H J. From Models to Ornamentals:How Is Flower Senescence Regulated?[J]. Plant MolBiol, 2013, 82(6): 563-574. |
[30] | LIU J, EKRAMODDOULLAH A K M. The Family 10 of Plant Pathogenesis-Related proteins:Their Structure, Regulation, and Function in Response to Biotic and Abiotic Stresses[J]. PhysiolMol Plant P, 2006, 68(1): 3-13. |