|
- 2018
耦合Schr?dinger-KdV方程的高阶保能量方法
|
Abstract:
耦合Schr?dinger-KdV方程具有能量守恒特性.基于四阶平均向量场方法和傅里叶拟谱方法构造了耦合Schr?dinger-KdV方程的高阶保能量格式,并用新格式数值模拟孤立波的行为.结果表明新的高阶格式能较好地模拟耦合Schr?dinger-KdV方程孤立波的演化行为,且精确地保持方程的离散能量守恒特性.
The coupled Schr?dinger-KdV equation has the energy conservation property. A high-order energy preserving scheme of the coupled Schr?dinger-KdV equation is obtained with the fourth-order average vector field method and the Fourier pseudo-spectrum method, and the behavior of the solitary wave is simulated with the new format. Numerical results show that the new scheme can well simulate the evolution of the behaviors of the coupled equation and exactly preserve the discrete energy conservation property of the equation
[1] | CELLEDOIN E, MCLACHLAN R I, OWREN B, et al. Energy-Preserving Intergrators and the Structure of B-Series[J]. Foundations of Computational Mathematics, 2010, 10(6): 673-693. DOI:10.1007/s10208-010-9073-1 |
[2] | 冯康, 秦孟兆. 哈密尔顿系统的辛几何法[M]. 杭州: 浙江科学技术出版社, 2003. |
[3] | QIN M Z, ZHU W J. Construction of High Order Symplectic Schemes by Composition[J]. Computing, 1992, 47(3-4): 309-321. DOI:10.1007/BF02320199 |
[4] | WANG Y S, WANG B, QIN M Z. Local Structure-Preserving Algorithms for Partial Differential Equations[J]. Science in China series A:Mathematics, 2008, 51(11): 2115-2136. DOI:10.1007/s11425-008-0046-7 |
[5] | CELLEDONI E, MCLACHLAN R I, OWEREN B, et al. On Conjugate B-Series and Their Geometric Structure[J]. Journal of Numerical Analysis Industrial and Applied Mathematics, 2010, 5(1-2): 85-94. |
[6] | SUN J Q, GU X Y, MA Z Q. Numerical Study of the Soliton Waves of the Coupled Nonlinear Schr?dinger System[J]. Physical D:Nonlinear Phenomena, 2004, 196(3/4): 311-328. |
[7] | CHEN J B, QIN M Z, TANG Y F. Symplectic and Multi-Symplectic Methods for the Nonlinear Schr?dinger Equation[J]. Computers and Mathematics with Applications, 2002, 43(8-9): 1095-1106. DOI:10.1016/S0898-1221(02)80015-3 |
[8] | ZHANG H, SONG S H, CHEN X D, et al. Average Vector Field Methods for the Coupled Schr?dinger-KdV Equations[J]. Chinese Physics B, 2014, 23(7): 242-250. |
[9] | CHARTIER P, FAOU E, MURUA A. An Algebraic Approach to Invariat Preserving Integators:The Case of Quadratic and Hamiltonian Invariants[J]. Numerische Mathematik, 2006, 103(4): 575-590. DOI:10.1007/s00211-006-0003-8 |
[10] | QUISPE G R W, MCLAREN D I. A New Class of Energy-Preserving Numerical Integration Methods[J]. Journal of Physics A:Mathematical and Theoretical, 2008, 41(4): 045206. DOI:10.1088/1751-8113/41/4/045206 |
[11] | MCLACHLAN R I, QUISPEL G R W, ROBIDOUX N. Geometric Integration Using Discrete Gradients[J]. Philosophical Trasaction of the Royal Society A:Mathematic Physical and Engineering Science, 1999, 357(1754): 1021-1045. DOI:10.1098/rsta.1999.0363 |