全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类带双临界指数的Schr?dinger-Poisson系统正基态解的存在性
Existence of Positive Ground State Solutions for a Class of Schr?dinger-Poisson Systems with Double Critical Exponents

DOI: 10.13718/j.cnki.xdzk.2018.06.013

Keywords: Schr?dinger-Poisson系统, 双临界指数, 变分法, 山路引理, 正基态解
Schr?dinger-Poisson system
, double critical exponent, variational method, mountain pass theorem, positive ground state solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用变分法和山路引理研究一类带有双临界指数的Schr?dinger-Poisson系统,证明了其正基态解的存在性.
By using the variational method and the mountain pass theorem, we prove the existence of positive ground state solutions for a class of Schr?dinger-Poisson systems with double critical exponents

References

[1]  AZZOLLINI A, D'AVENIA P, LUISI V. Generalized Schr?dinger-Poisson Type Systems[J]. Commun Pur Appl Anal, 2017, 12(2): 867-879.
[2]  LI F Y, LI Y H, SHI J P. Existence of Positive Solutions to Schr?dinger-Poisson Type Systems with Critical Exponent[J]. Commun Contemp Math, 2014, 16(6): 1-28.
[3]  李苗苗, 唐春雷. 一类带临界指数的Schr?dinger-Poisson方程正解的存在性[J]. 西南师范大学学报(自然科学版), 2016, 41(4): 35-38.
[4]  BENCI V, FORTUNATO D. An Eigenvalue Problem for the Schr?dinger-Maxwell Equations[J]. Topol Methods Nonlinear Anal, 1998, 11(2): 283-293. DOI:10.12775/TMNA.1998.019
[5]  ZHONG X J, TANG C L. Ground State Sign-Changing Solutions for a Schr?dinger-Poisson System with a Critical Nonlinearity in ${{\mathbb{R}}^{3}}$ [J]. Nonlinear Anal, 2018, 39(2): 166-184.
[6]  ZHAO L G, ZHAO F K. Positive Solutions for Schr?dinger-Poisson Equations with a Critical Exponent[J]. Nonlinear Anal, 2009, 70(6): 2150-2164. DOI:10.1016/j.na.2008.02.116
[7]  WILLEM M. Minimax Theorems[M]. Boston: Birkh?user, 1996.
[8]  JEANJEAN L. Existence of Solutions with Prescribed Norm for Semilinear Elliptic Equations[J]. Nonlinear Anal, 1997, 28(10): 1633-1659. DOI:10.1016/S0362-546X(96)00021-1
[9]  BRéZIS H, NIRENBERG L. Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[J]. Commun Pure Appl Math, 1983, 36(4): 437-477. DOI:10.1002/(ISSN)1097-0312

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133