|
- 2018
薄域上非自治随机反应扩散方程吸引子的存在性
|
Abstract:
主要研究薄域上带加法噪音的反应扩散方程的极限行为,证明了在n+1维薄域上该方程的拉回吸引子的存在性、唯一性.
In this paper, we investigate the limiting behavior of non-autonomous stochastic reaction-diffusion equations driven by additive noise defined on thin domains. We prove the existence and uniqueness of the pullback random attractor for the equations in an n+1-dimensional thin domain
[1] | LI D S, WANG B X, WANG X H. Limiting Behavior of Non-Autonomous Stochastic Reaction-Diffusion Equations on Thin Domains[J]. J Differential Equations, 2017, 262(3): 1575-1602. DOI:10.1016/j.jde.2016.10.024 |
[2] | LIU W, WANG B. Poisson-Nernst-Planck Systems for Narrow Tubular-Like Membrane Channels[J]. J Dynam Differen-Tial Equations, 2010, 22(3): 413-437. DOI:10.1007/s10884-010-9186-x |
[3] | ARNOLD L. Random Dynamical Systems[M]. Cambridge: Cambridge University Press, 1991. |
[4] | CRAUEL H, FLANDOLI F. Attractors for Random Dynamical Systems[J]. Probab Theory Related Fields, 1994, 100(3): 365-393. DOI:10.1007/BF01193705 |
[5] | HANS C, ARNAUD D, FRANCO F. Random Attractors[J]. J Dynam Differential Equantions, 1997, 9(2): 307-341. DOI:10.1007/BF02219225 |
[6] | TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 1997. |
[7] | WANG B. Sufficient and Necessary Criteria for Existence of Pollback Attractors for Non-Compact Random Dynamical Systems[J]. J Differential Equations, 2012, 253(5): 1544-1583. DOI:10.1016/j.jde.2012.05.015 |