|
- 2018
脱乙酰基葡甘聚糖对鳙鱼肌原纤维蛋白热诱导凝胶特性的影响
|
Abstract:
为了改善鳙鱼肌原纤维蛋白的凝胶特性,以脱乙酰基魔芋葡甘聚糖(konjac glucomannan,KGM)为凝胶改良剂,探讨了影响鳙鱼肌原纤维蛋白凝胶特性的因素,并以脱乙酰基KGM添加量、加热温度和NaCl浓度为自变量,凝胶强度为响应值,采用响应面设计和分析优化得到了最佳制备条件:脱乙酰基KGM添加量0.52%,加热温度79.5 ℃,NaCl浓度0.10 mol/L;在此条件下鳙鱼肌原纤维蛋白的凝胶强度可达107.35 g/cm.通过进一步扫描电镜观察发现,添加脱乙酰基KGM的肌原纤维蛋白热凝胶结构更加致密,空洞小而少,进而提高复合肌原纤维蛋白凝胶的性质.
To improve the gel properties of bighead carp (Aristichthys nobilis) myofibrillar protein, deacetylated konjac glucomannan (KGM) was added to the myofibrillar protein system as the gel modifier. The influencing factors for the gel properties of bighead carp myofibrillar protein were investigated. Deacetylated konjac glucomannan content, heating temperature and NaCl concentration served as the independent variables and gel strength as the response. Optimization of formulation variables was realized, using the response surface methodology. The results showed that the optimum conditions for preparing the myofibrillar protein gel were as follows: deacetylation konjac glucomannan content 0.52%, heating temperature 79.5 ℃ and NaCl concentration 0.10 mol/L. Under these conditions, the gel strength of myofibrillar protein gels was experimentally 107.35 g/cm. Examination with scanning electron microscopy indicated that the addition of deacetylated KGM made the microstructures of the myofibrillar protein more compact, compared to the pure myofibrillar protein gel, which improved the properties of the composite myofibrillar protein gel
[1] | ZHANG T, XUE Y, LI Z, et al. Effects of Deacetylation of Konjac Glucomannan on Alaska Pollock Surimi Gels Subjected to High-Temperature (120 ℃) Treatment[J]. Food Hydrocolloids, 2015, 43: 125-131. DOI:10.1016/j.foodhyd.2014.05.008 |
[2] | KOBAYASHI Y, MAYER S G, PARK J W. FT-IR and Raman Spectroscopies Determine Structural Changes of Tilapia Fish Protein Isolate and Surimi Under Different Comminution Conditions[J]. Food Chemistry, 2017, 226: 156-164. DOI:10.1016/j.foodchem.2017.01.068 |
[3] | 纪蓉, 江海, 胡亚芹, 等. γ-聚谷氨酸对带鱼鱼糜凝胶特性的影响[J]. 中国食品学报, 2012, 12(4): 90-99. |
[4] | ZHANG T, LI Z, WANG Y, et al. Effects of Konjac Glucomannan on Heat-Induced Changes of Physicochemical and Structural Properties of Surimi Gels[J]. Food Research International, 2016, 83: 152-161. DOI:10.1016/j.foodres.2016.03.007 |
[5] | HU H, PEREIRA J, XING L, et al. Thermal Gelation and Microstructural Properties of Myofibrillar Protein Gel with the Incorporation of Regenerated Cellulose[J]. LWT-Food Science and Technology, 2017, 86: 14-19. DOI:10.1016/j.lwt.2017.07.015 |
[6] | 盖静. 不同加热温度对鳙鱼肌球蛋白聚集行为的影响及其机理研究[D]. 镇江: 江苏大学, 2016. |
[7] | SUN X D, HOLLEY R A. Factors Influencing Gel Formation by Myofibrillar Proteins in Muscle Foods[J]. Comprehensive Reviews in Food Science and Food Safety, 2011, 10(1): 33-51. DOI:10.1111/crfs.2011.10.issue-1 |
[8] | FENG M, PAN L, YANG X, et al. Thermal Gelling Properties and Mechanism of Porcine Myofibrillar Protein Containing Flaxseed Gum at Different NaCl Concentrations[J]. LWT-Food Science and Technology, 2018, 87: 361-367. DOI:10.1016/j.lwt.2017.09.009 |
[9] | XIONG G, CHENG W, YE L, et al. Effects of Konjac Glucomannan on Physicochemical Properties of Myofibrillar Protein and Surimi Gels from Grass Carp (Ctenopharyngodon Idella)[J]. Food Chemistry, 2009, 116(2): 413-418. DOI:10.1016/j.foodchem.2009.02.056 |
[10] | 贾丽娜. 魔芋葡甘聚糖和脂肪影响罗非鱼肌原纤维蛋白凝胶性能的研究[D]. 上海: 上海海洋大学, 2015. |
[11] | 贾丹, 刘茹, 刘明菲, 等. 转谷氨酰胺酶对鳙鱼糜热诱导胶凝特性的影响[J]. 食品科学, 2013, 34(9): 37-41. DOI:10.7506/spkx1002-6630-201309009 |
[12] | ZHANG C, CHEN J D, YANG F Q. Konjac Glucomannan, a Promising Polysaccharide for OCDDS[J]. Carbohydrate Polymers, 2014, 104: 175-181. DOI:10.1016/j.carbpol.2013.12.081 |
[13] | 林好, 赖明耀, 汪秀妹, 等. 魔芋葡甘聚糖-明胶复配维生素微胶囊的研究[J]. 西南大学学报(自然科学版), 2014, 36(2): 164-170. |
[14] | LI J, WANG Y, JIN W, et al. Application of Micronized Konjac Gel for Fat Analogue in Mayonnaise[J]. Food Hydrocolloids, 2014, 35: 375-382. DOI:10.1016/j.foodhyd.2013.06.010 |
[15] | LIU J, WANG X, DING Y. Optimization of Adding Konjac Glucomannan to Improve Gel Properties of Low-Quality Surimi[J]. Carbohydrate Polymers, 2013, 92(1): 484-489. DOI:10.1016/j.carbpol.2012.08.096 |
[16] | 夏军军, 李洪军, 贺稚非, 等. 不同腌制方式对牛肉品质特性的影响[J]. 西南大学学报(自然科学版), 2016, 38(2): 12-19. |
[17] | FAN M, HU T, ZHAO S, et al. Gel Characteristics and Microstructure of Fish Myofibrillar Protein/Cassava Starch Composites[J]. Food Chemistry, 2017, 218: 221-230. DOI:10.1016/j.foodchem.2016.09.068 |
[18] | 杨振, 孔保华, 夏秀芳, 等. 魔芋粉对鲤鱼肌原纤维蛋白凝胶特性的影响[J]. 食品科学, 2012, 33(11): 116-120. |
[19] | 娄忠纬. 鳙鱼中转谷氨酰胺酶性质的研究及其对鱼糜凝胶化的影响[D]. 杭州: 浙江工商大学, 2015. |
[20] | 宋儒坤. 脱乙酰进程对魔芋葡甘聚糖单相变及多相变耦合中组装行为的影响[D]. 武汉: 华中农业大学, 2013. |
[21] | ZHOU Y, ZHAO D, FOSTER T J, et al. Konjac Glucomannan-Induced Changes in Thiol/Disulphide Exchange and Gluten Conformation Upon Dough Mixing[J]. Food Chemistry, 2014, 143: 163-169. DOI:10.1016/j.foodchem.2013.07.088 |
[22] | 王良玉, 何明祥, 庞杰, 等. 魔芋葡甘聚糖凝胶体系对带鱼鱼糜流变及质构特性的影响[J]. 西南大学学报(自然科学版), 2013, 35(6): 88-94. |
[23] | RAMíREZ J A, URESTI R M, VELAZQUEZ G, et al. Food Hydrocolloids as Additives to Improve the Mechanical and Functional Properties of Fish Products: A Review[J]. Food Hydrocolloids, 2011, 25(8): 1842-1852. DOI:10.1016/j.foodhyd.2011.05.009 |
[24] | DA SILVA D F, DE SOUZA F S B, BRUSCHI M L, et al. Effect of Commercial Konjac Glucomannan and Konjac Flours on Textural, Rheological and Microstructural Properties of Low Fat Processed Cheese[J]. Food Hydrocolloids, 2016, 60: 308-316. DOI:10.1016/j.foodhyd.2016.03.034 |
[25] | YIN T, PARK J W. Effects of Nano-Scaled Fish Bone on the Gelation Properties of Alaska Pollock Surimi[J]. Food Chemistry, 2014, 150: 463-468. DOI:10.1016/j.foodchem.2013.11.041 |
[26] | HO H V T, JOVANOVSKI E, ZURBAU A, et al. A Systematic Review and Meta-Analysis of Randomized Controlled Trials of the Effect of Konjac Glucomannan, a Viscous Soluble Fiber, on LDL Cholesterol and the New Lipid Targets Non-HDL Cholesterol and Apolipoprotein B[J]. The American Journal of Clinical Nutrition, 2017, 105(5): 1239-1247. DOI:10.3945/ajcn.116.142158 |
[27] | HAN M, WANG P, XU X, et al. Low-Field NMR Study of Heat-Induced Gelation of Pork Myofibrillar Proteins and Its Relationship with Microstructural Characteristics[J]. Food Research International, 2014, 62: 1175-1182. DOI:10.1016/j.foodres.2014.05.062 |