|
- 2018
一类非线性系统状态的网络化估计方法
|
Abstract:
提出了一类Lipschitz非线性连续时间时滞系统基于非均匀采样测量的网络化状态估计方法.利用线性连续时间系统采样控制的方法,在考虑系统和网络传输时滞及量化等因素的条件下,通过构造新的李雅普诺夫泛函得到了保证估计误差系统全局渐近稳定的线性矩阵不等式条件.在此基础上,给出了状态估计器增益矩阵基于线性矩阵不等式的计算方法.最后,通过仿真例子验证了本文方法的有效性.
This paper presents a new state estimation method for Lipschitz nonlinear continuous time delay systems subject to non-uniformly sampled measurements. Based on the recent developments in sampled-data control of linear continuous-time systems and with the consideration of system and transmission delay and data quantization, a new Lyapunov functional is constructed and a new linear matrix inequality sufficient condition is established to guarantee the global stability of the estimation error system. Then, a design method for the state observer gain matrix is obtained based on the linear matrix inequality approach. Finally, the effectiveness of the proposed state estimation algorithm is illustrated by a numerical example
[1] | RAJAMANI R. Observers for Lipschitz Nonlinear Systems[J]. IEEE Transactions on Automatic Control, 1998, 43: 397-401. DOI:10.1109/9.661604 |
[2] | DEZA F, BUSVELLE E, GAUTHIER JP, RAKOTOPARA D. High Gain Estimation for Nonlinear Systems[J]. Systems & Control Letters, 1992, 18: 295-299. |
[3] | HAMMOURI H, NADRI M, MOTA R. Constant Gain Observer for Continuous-Discrete Time Uniformly Observable Systems [C]// Proceedings of 45th IEEE Conference on Decision and Control. New York: IEEE Computer Society Press, 2006: 5406-5411. |
[4] | XIA Y Q, GAO Y L, Yan L P, et al. Recent Progress in Networked Control Systems——A Survey[J]. International Journal of Automation and Computing, 2015, 12: 343-367. DOI:10.1007/s11633-015-0894-x |
[5] | BOYD S, GHAOUI L E, FERON E, BALAKRISHNAN V. Linear Matrix Inequalities in Systems and Control Theory[M]. Philadelphia: SIAM, 1994. |
[6] | HE Y, WANG Q G, LIN C, et al. Delay Range Dependent Stability for Systems with Time-Varying Delay[J]. Automatica, 2007, 43(2): 371-376. DOI:10.1016/j.automatica.2006.08.015 |
[7] | ZEITZ M. The Extended Luenberger Observer for Nonlinear Systems[J]. Systems & Control Letters, 1987, 9(2): 149-156. |
[8] | ARCAK M, KOKOTOVIC P. Nonlinear Observers: a Circle Criterion Design and Robustness Analysis[J]. Automatica, 2001, 37(12): 1923-1930. DOI:10.1016/S0005-1098(01)00160-1 |
[9] | OUELLETTE D V. Schur Complements and Statistics[J]. Linear Algebra and Its Applications, 1981, 36: 187-295. DOI:10.1016/0024-3795(81)90232-9 |
[10] | CHEN X, WANG Z. An Observer-Based Chaotic Synchronization Scheme for Time-Delay Secure Communication Systems [C] //Proceedings of the 2007 IEEE International Conference on Networking, Sensing and Control. New York: IEEE Computer Society Press, 2007: 209-211. |
[11] | RAFF T, KOGEL M, ALLGOWER F. Observer with Sample-and-Hold Updating for Lipschitz Nonlinear Systems with Nonuniformly Sampled Measurements [C] //Proceeding of the American Control Conference. New York: IEEE Computer Society Press, 2008: 5254-5257. |
[12] | FU M, XIE L. The Sector Bound Approach to Quantized Feedback Control[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1698-1711. DOI:10.1109/TAC.2005.858689 |
[13] | RUSLAN E S, ALEXANDER F, DANIEL L. Energy Control of a Pendulum with Quantized Feedback[J]. Automatica, 2016, 67: 171-177. DOI:10.1016/j.automatica.2016.01.019 |
[14] | LIU K, FRIDMAN E, JOHANSSONK H. Dynamic Quantization of Uncertain Linear Networked Control Systems[J]. Automatica, 2015, 59: 248-255. DOI:10.1016/j.automatica.2015.06.041 |
[15] | ELIA E, MITTER K. Stabilization of Linear Systems with Limited Information[J]. IEEE Transactions on Automatic Control, 2001, 46: 1384-1400. DOI:10.1109/9.948466 |