全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

溶胶凝胶自燃烧法合成ZnS纳米颗粒及粒径控制
Size Distribution Control of ZnS Nanoparticles Synthesized with the Sol-Gel Auto-combustion Method

DOI: 10.13718/j.cnki.xdzk.2018.11.013

Keywords: 溶胶凝胶自燃烧法, 硫化锌纳米颗粒, 半导体, 粒径分布
sol-gel autocombustion
, zinc sulfide nanoparticle, semiconductor, size distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

以硝酸锌、硫脲、乙二醇以及氨基乙酸等为原料,运用溶胶凝胶自燃烧法合成了尺寸和形貌均一性较好的ZnS多晶纳米颗粒.经X射线衍射仪、扫描电子显微镜、紫外-可见分光光度计等表征发现合成的ZnS纳米颗粒具有闪锌矿结构,其平均粒径为160 nm且每个纳米颗粒均由约10 nm的晶粒组成,且样品具有良好的光吸收性能,其能带带隙为3.46 eV.还详细研究了前驱物中组分比例对ZnS纳米颗粒粒径分布的具体影响.研究表明前驱物中n(乙二醇)/n(氨基乙酸)是影响ZnS纳米颗粒粒径分布的主要因素.这一研究结果提供了一种基于自燃烧法的可靠的ZnS纳米颗粒合成工艺,并且实现了利用n(乙二醇)/n(氨基乙酸)独立优化纳米颗粒粒径均一性,有利于基于此工艺的功能材料设计和光电性能优化.
Porous ZnS nanoparticles with narrow size distribution and regular shape were synthesized with the sol-gel auto-combustion method, using zinc nitrate, thiourea, ethylene glycol and glycine as the precursors. The structure, morphology and optical properties of the products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet-visible spectroscopy (UV-Vis). The synthesized ZnS nanoparticles manifested a sphalerite structure and a band gap of 3.46 eV. The average diameter of the nanoparticles was 160 nm, and each nanoparticle consisted of crystallites about 10 nm in size. Further, we studied the influence of the component ratio in the precursors on particle size distribution of ZnS nanoparticles, and found that ethylene glycol/glycine ratio in the precursors was the main factor affecting the particle size distribution of ZnS nanoparticles. In this work, a reliable synthesis routine for ZnS nanoparticles was proposed, and narrow size distribution was achieved with adjustment of ethylene glycol/glycine ratio in the precursors, which is expected to be beneficial to the performance optimization of functional materials synthesized with the sol-gel autocombustion method

References

[1]  DONG X L, ZHANG Z D, JIN S R, et al. Characterization of Fe-Ni (C) Nanocapsules Synthesized by Arc Discharge in Methane[J]. J Mater Res, 1999, 14(5): 1782-1790. DOI:10.1557/JMR.1999.0240
[2]  ZHANG Z D, ZHENG J G, SKORVANEK I, et al. Shell/Core Structure and Magnetic Properties of Carbon-Coated Fe-Co (C) Nanocapsules[J]. J Phys-Condens Mat, 2001, 13(9): 1921-1929. DOI:10.1088/0953-8984/13/9/314
[3]  SCH?FER J, SIGUMUND W, ROY S, et al. Low Temperature Synthesis of Ultrafine Pb (Zr, Ti) O3 Powder by Sol-Gel Combustion[J]. J Mater Res, 1997, 12(10): 2518-2521. DOI:10.1557/JMR.1997.0333
[4]  WAHAB R, ANSARI S G, KIM Y S, et al. Effect of Annealing on the Conversion of ZnS to ZnO Nanoparticles Synthesized by the Sol-Gel Method Using Zinc Acetate and Thiourea[J]. Met Mater Int, 2009, 15(3): 453-458. DOI:10.1007/s12540-009-0453-5
[5]  JIANG Y W, GONG J F, YANG S H, et al. ZnxCd1-xS Nanocrystals Synthesized by Sol-Gel Autocombustion Method[J]. Mater Res Inno-Vations, 2012, 16(4): 257-260. DOI:10.1179/1433075X11Y.0000000063
[6]  WU K H, TING T H, LI M C, et al. Sol-Gel Auto-Combustion Synthesis of SiO2-Doped NiZn Ferrite by Using Various Fuels[J]. J Magn Magn Mater, 2006, 298(1): 25-32. DOI:10.1016/j.jmmm.2005.03.008
[7]  KAUR M, NAGARAIA C M. Template-Free Synthesis of ZnS Nanocrystals with a New Sulfur and Their Photocatalytic Study[J]. Mater lett, 2015(154): 90-93.
[8]  CHEN F J, CAO Y L, JIA D Z, et al. A Facile Route for the Syn-Thesis of ZnS Rods with Excenllent Photocatalytic Acitivity[J]. Chem Eng J, 2013, 234(11): 223-231.
[9]  DESHPANDE K, MUKASYAN A, VARMA A, et al. Direct Synthesis of Iron Oxide Nanopowders by the Combustion Approach:Reaction Mechanism and Properties[J]. Chem Mater, 2004, 16(24): 4896-4904. DOI:10.1021/cm040061m
[10]  WANG G, HUANG B B, LI Z J, et al. Synthesis and Characterization of ZnS with Controlled Amount of S Vacancies for Photocatalytic H2 Production Under Visible Light[J]. Sci Rep, 2015(5): 8544-1.
[11]  WANG D J, XUE G L, ZHEN Y Z, et al. Monodispersed Ag Nanoparticles Loaded on the Surface of Spherical Bi2WO6 Nano-Architectures with Enhanced Photocatalytic Activities[J]. J Mater Chem, 2012, 22(11): 4571-4758.
[12]  蒋毓文.溶胶凝胶自燃烧法合成几种纳米材料[D].南京: 南京大学, 2012.
[13]  苏正华.溶胶-凝胶法制备铜锌锡硫(Cu2ZnSnS4)薄膜太阳能电池[D].长沙: 中南大学, 2013.
[14]  WANG L N, ZHANG Y Y, LI X Y, et al. Nanostructured Porous ZnO Film with Enhanced Photocatalytic Activity[J]. Thin Solid Films, 2011, 519(16): 5673-5678. DOI:10.1016/j.tsf.2011.02.070
[15]  QIN B, GUO Y P, PAN D, et al. Size-Controlled Synthesis of BiFeO3 Nanoparticles by a Facile and Stale Sol-Gel Method[J]. J Mater Sci:Mater Electron, 2016, 27(10): 10803-10809. DOI:10.1007/s10854-016-5186-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133