|
- 2018
带非局部效应的单种群模型时空分布模式分析
|
Abstract:
主要利用反应扩散方程的空间均匀的Hopf分支条件和其行波方程的分支条件,得到了该单种群模型的时空分布模式,主要包括空间均匀时间上周期振荡的分布模式和空间非均匀的周期行波模式.此外,还借助数值计算的方法,验证了所得的理论结果.数值计算结果发现该空间非均匀的行波解还受到时滞的影响,当时滞量增大时,该空间非均匀的行波解由波前解转化为带振荡尾巴的周期行波解.
In this paper, the spatiotemporal distribution patterns of a single population model with nonlocal effect are investigated by employing the Hopf bifurcation theory, including the spatially homogeneous and temporally oscillated distribution pattern and spatially nonhomogeneous periodic traveling wave solution. Besides, the theoretical results are validated by using the numerical method. It is found that as the time delay increases the shape of this traveling wave solution will vary from the traveling wave front to the periodic traveling wave with an oscillation wake
[1] | 李瑜, 李艳玲. 具有扩散的三种群食物链模型的Hopf分支[J]. 计算机工程与应用, 2016, 52(3): 1-6. DOI:10.3778/j.issn.1002-8331.1401-0382 |
[2] | ZHANG J M, PENG Y H. Travelling Waves of the Diffusive Nicholson's Blowflies Equation with Strong Generic Delay Kernel and Non-Local Effect[J]. Nonlinear Analysis:Theory, Methods & Applications, 2008, 68(5): 1263-1270. |
[3] | SONG Y, YANG R, SUN G. Pattern Dynamics in a Gierer-Meinhardt Model with a Saturating Term[J]. Applied Mathematical Modelling, 2017, 46: 476-491. DOI:10.1016/j.apm.2017.01.081 |
[4] | SONG Y, ZHANG T, PENG Y. Turing-Hopf Bifurcation in the Reaction-Diffusion Equations and Its Applications[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 33: 229-258. DOI:10.1016/j.cnsns.2015.10.002 |
[5] | WU J H, ZOU X F. Travelling Wave Fronts of Reaction-Diffusion Systems with Delay[J]. Journal of Dynamics and Differential Equations, 2001, 13(3): 651-687. DOI:10.1023/A:1016690424892 |
[6] | WANG Z C, LI W T, RUAN S G. Traveling Wave Fronts in Reaction-Diffusion Systems with Spatio-Temporal Delays[J]. Journal of Differrential Equations, 2006, 222(1): 185-232. DOI:10.1016/j.jde.2005.08.010 |
[7] | LI W T, RUAN S, Wang Z C. On the Diffusive Nicholson's Blowflies Equation with Nonlocal Delay[J]. Journal of Nonlinear Science, 2007, 17(6): 505-525. DOI:10.1007/s00332-007-9003-9 |
[8] | 黄玲智. 具有脉冲扩散和扩散时滞的单种群模型研究[J]. 重庆工商大学学报(自然科学版), 2015, 32(9): 5-9. |
[9] | BRITTON N F. Spatial Structures and Periodic Travelling Waves in an Integro-Differential Reaction-Diffusion Population Model[J]. SIAM Journal on Applied Mathematics, 1990, 50(6): 1663-1688. DOI:10.1137/0150099 |
[10] | 张建明, 彭亚红. 具有非局部反应的时滞扩散Nicholson方程的行波解[J]. 数学年刊, 2006, 27(6): 771-778. DOI:10.3321/j.issn:1000-8134.2006.06.006 |
[11] | SHERRATT J A. Invading Wave Fronts and Their Oscillatory Wakes are Linked by a Modulated Travelling Phase Resetting Wave[J]. Physica D:Nonlinear Phenomena, 1998, 117(1-4): 145-166. DOI:10.1016/S0167-2789(97)00317-5 |
[12] | TANG X S, SONG Y L. Stability, Hopf Bifurcations and Spatial Patterns in a Delayed Diffusive Predator-Prey Model with Herd Behavior[J]. Applied Mathematics and Computation, 2015, 254: 375-391. DOI:10.1016/j.amc.2014.12.143 |
[13] | BTITTON N F. Aggregation and the Competitive Exclusion Principle[J]. Journal of Theoretical Biology, 1989, 136(1): 57-66. DOI:10.1016/S0022-5193(89)80189-4 |