全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

辣椒产地土壤重金属潜在生态风险评价——以贵州省百宜镇为例
Distribution and Risk Assessment of Heavy Metals in a Pepper-Growing Area——A Case Study in Baiyi, Guizhou

DOI: 10.13718/j.cnki.xdzk.2018.11.001

Keywords: 贵州省百宜镇, 辣椒产地, 空间分布, 单因子指数, 内梅罗综合指数, 生态风险评价
Baiyi town of Guizhou province
, pepper-producing area, spatial distribution, single factor index, Nemero synthesis index, ecological risk assessment

Full-Text   Cite this paper   Add to My Lib

Abstract:

辣椒对土壤重金属有较强的富集性,辣椒产地土壤重金属风险评价对区域辣椒绿色生产和食品安全至关重要.选择全国著名的地方特色辣椒产地贵州省百宜镇作为研究区,采集该区辣椒耕地表层(0~20 cm)土壤样品125个,分析土壤重金属Cd,Pb,Cr,Cu和Zn质量分数,并采用单因子污染指数法、内梅罗综合污染指数法和Hakanson潜在生态危害指数法对5种重金属污染状况和潜在生态风险进行分析和评价.结果表明:研究区土壤Zn,Cr,Pb,Cu,Cd质量分数平均值分别为116.50,73.11,55.76,33.53,0.45 mg/kg,除了Cd元素,其余4种重金属平均质量分数均低于国家土壤环境质量标准(GB15618-1995)二级标准;从空间分布看,土壤Cd,Pb,Cr,Cu和Zn质量分数研究区北部高于南部,东部高于西部;以国家二级限量值为评价标准,研究区96%以上的样点土壤Pb,Cr,Cu和Zn污染均属于安全级别,79.2%的样点土壤属于Cd轻度污染级别,5种重金属综合污染程度为轻度;研究区土壤重金属潜在生态风险程度从大到小依次为Cd,Pb,Cu,Cr,Zn,5种重金属综合生态风险程度为轻度.目前,百宜镇辣椒地土壤重金属Cd,Pb,Cr,Cu和Zn污染程度较轻,潜在生态风险处于可控范围内,基本不会对当地的辣椒种植和生态环境产生影响.
Pepper has a good ability of heavy metal enrichment, and risk assessment of soil heavy metals in pepper-growing areas is of vital importance for green production and food safety. BaiYi Town in Guizhou province, a famous pepper-producing area in China, was chosen as the study area, and 125 surface soil (0-20 cm) samples were collected from a pepper plantation and the concentrations of Cd, Pb, Cr, Cu and Zn in them were analyzed. The pollution degrees and potential ecological risks of the heavy metals were evaluated with the single factor pollution index, Nemero synthesis index and Hakanson's potential ecological risk index. The results showed that the average contents of soil Zn, Cr, Pb, Cu and Cd in the study area was 116.50, 73.11, 55.76, 33.53 and 0.45 mg/kg, respectively. They were lower than the contents of Class 2 according to the Environmental quality standard for soils of China (GB15618-1995), with the exception of Cd. As for their spatial distribution, the concentrations of Cd, Pb, Cr, Cu and Zn were higher in the north and the east than in the south and the west of the study area. Evaluated with Class 2 of GB15618-1995, more than 96.0% of the soil samples were pollution-free of Pb, Cr, Cu and Zn, and 79.2% were slightly polluted of Cd. The comprehensive pollution degrees of all the 5 heavy metals in the study area were at a low level. The potential ecological risk of the heavy metals was in the sequence of Cd, Pb, Cu, Cr, Zn, and their potential ecological risks were at a low risk level. In conclusion, at present, soil heavy metals (Cd, Pb, Cr, Cu and Zn) have but a light pollution degree in the pepper-cultivated land of Baiyi, their potential ecological hazard remains in a controllable range and they will not affect the local pepper planting and ecological environment

References

[1]  陈涛, 常庆瑞, 刘京, 等. 长期污灌农田土壤重金属污染及潜在环境风险评价[J]. 农业环境科学学报, 2012, 31(11): 2152-2159.
[2]  徐明飞, 郑纪慈, 阮美颖, 等. 不同类型蔬菜重金属(Pb, As, Cd, Hg)积累量的比较[J]. 浙江农业学报, 2008, 20(1): 29-34. DOI:10.3969/j.issn.1004-1524.2008.01.007
[3]  TIWARI K K, SINGH N K, PATEL M P, et al. Metal Contamination of Soil and Translocation in Vegetables Growing under Industrial Wastewater Irrigated Agricultural Field of Vadodara, Gujarat, India[J]. Ecotoxicol Environ Saf, 2011, 74(6): 1670-1677. DOI:10.1016/j.ecoenv.2011.04.029
[4]  邢丹, 张爱民, 王永平, 等. 贵州典型土壤-辣椒系统中镉的迁移富集特征[J]. 西南农业学报, 2016, 29(2): 332-336.
[5]  李非里, 刘丛强, 杨元根, 等. 贵阳市郊菜园土-辣椒体系中重金属的迁移特征[J]. 生态与农村环境学报, 2007, 23(4): 52-56. DOI:10.3969/j.issn.1673-4831.2007.04.012
[6]  胡明文. 贵州辣椒产业现状与发展策略[J]. 贵州农业科学, 2005, 33.
[7]  李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 36(3): 1037-1044.
[8]  王大州, 林剑, 王大霞, 等. 根际土-辣椒系统中重金属的分布及食物安全风险评价[J]. 地球与环境, 2014, 42(4): 546-549.
[9]  张清海, 陆洋, 罗艳, 等. 贵州省典型农业区土壤重金属污染及在蔬菜中的富集研究[J]. 中国环境监测, 2008, 24(6): 73-76. DOI:10.3969/j.issn.1002-6002.2008.06.017
[10]  中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[11]  ZHANG X, CHEN D, ZHONG T, et al. Assessment of Cadmium (Cd) Concentration in Arable Soil in China[J]. Environmental Science and Pollution Research, 2015, 22(7): 4932-4941. DOI:10.1007/s11356-014-3892-6
[12]  曾希柏, 李莲芳, 梅旭荣. 中国蔬菜土壤重金属含量及来源分析[J]. 中国农业科学, 2007, 40(11): 2507-2517. DOI:10.3321/j.issn:0578-1752.2007.11.016
[13]  熊仕娟.纳米沸石对Cd污染土壤的修复效应及机理研究[D].重庆: 西南大学, 2016.
[14]  谢云峰, 陈同斌, 雷梅, 等. 空间插值模型对土壤Cd污染评价结果的影响[J]. 环境科学学报, 2010, 30(4): 847-854.
[15]  夏敏, 赵炳梓, 张佳宝. 基于GIS的黄淮海平原典型潮土区土壤重金属积累研究[J]. 土壤学报, 2013, 50(4): 684-692.
[16]  张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2): 692-703.
[17]  张建, 杨瑞东, 陈蓉, 等. 贵州喀斯特地区土壤-辣椒体系重金属元素的生物迁移积累特征[J]. 食品科学, 2017, 38(21): 1-9. DOI:10.7506/spkx1002-6630-201721001
[18]  国家环境保护局科技标准司. GB15618-1995土壤环境质量标准[S].北京: 中国标准出版社, 1995.
[19]  冯宇佳, 赵全利, 孙洪欣, 等. 华北地区菜田土壤-蔬菜重金属污染状况和健康风险评价[J]. 河北农业大学学报, 2017, 40(1): 1-7.
[20]  NIELSEN D R, BOUMA J. Soil Spatial Variability[M]. Wageningen: Pucloc, 1985.
[21]  何江, 王新伟, 李朝生, 等. 黄河包头段水-沉积物系统中重金属的污染特征[J]. 环境科学学报, 2003, 23(1): 53-57. DOI:10.3321/j.issn:0253-2468.2003.01.011
[22]  徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. DOI:10.3969/j.issn.1003-6504.2008.02.030

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133