全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类新的带有参数δ∈[1, 2)的分数阶可微变分不等式的拓扑处理方法
Topological Methods for a New Class of Fractional Differential Variational Inequalities with δ∈[1, 2)

DOI: 10.13718/j.cnki.xdzk.2018.12.019

Keywords: 可微变分不等式, 分数阶可微变分不等式,
differential variational inequality
, fractional differential variational inequality, solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

在已有的变分不等式、可微变分不等式、分数阶可微变分不等式的模型的基础上,对一类新的带有参数δ∈[1,2)的分数阶可微变分不等式模型的解的存在性进行了相关的分析和研究.首先,在已有的分数阶可微变分不等式的模型基础上加了一个参数δ∈[1,2),得到了一类新的带有参数δ∈[1,2)的分数阶可微变分不等式模型,对这类新模型给出了详细的阐述;然后证明出该模型的解是非空的.
In this paper, a new class of fractional differential variational inequalities with δ∈[1, 2) are introduced and studied. Firstly, a parameter, δ∈[1, 2), is added to fractional differential variational inequalities, and a new class of fractional differential variational inequalities with δ∈[1, 2) is obtained. Finally, some lemmas and theorems are used to prove that the set of solutions of these differential variational inequalities are non-blank

References

[1]  LI Y, CHEN Y Q, PODLOBNY I. Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems[J]. Automatica, 2009, 45(8): 1965-1969. DOI:10.1016/j.automatica.2009.04.003
[2]  李瑾, 赵辉. 二阶非线性泛函微分方程的周期性解证明[J]. 西南师范大学学报(自然科学版), 2016, 41(7): 33-37.
[3]  PETRáS I. Fractioanl-Order Nonlinear Systems:Modeling, Analysis and Simulation[J]. Math Program (Ser A), 2011, 113: 345-424.
[4]  KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[J]. Elsevier, 2006, 204(49-52): 2453-2461.
[5]  VARSHA D G, HOSSEIN J. Analysis of Nonautonomous Fractional Differential Equations Involving Caputo Derivatives[J]. J Math Anal Appl, 2007, 328(2): 1026-1033. DOI:10.1016/j.jmaa.2006.06.007
[6]  YU J, HU C, JIAN H. a-Stability and a-Synchronization for Fractional-Order Neural Networks[J]. Elsevier Science, 2012, 35: 82-87.
[7]  PANG J S, STEWARD D E. Differential Variational Inequalities[J]. Math Program (Ser A), 2008, 113: 345-424. DOI:10.1007/s10107-006-0052-x
[8]  GWINNER J. On Differential Variational Inequalities and Projected Dynamical Systems-Equivalence and a Stability Result[J]. Discrete and Continuous Dynam Syst, 2007, 2007: 467-476.
[9]  GWINNER J. A Note on Linear Differential Variational Inequalities in Hilbert Space[J]. Advances in Information & Communication, 2011, 391: 85-91.
[10]  TASORA A, ANITESCU M. A Convex Complementarity Approach for Simulating Large Granular Flow[J]. J Comp Nonlinear Dyn, 2010, 5(3): 10-15.
[11]  KAMENSKII M, OBUKHOVSKII V, ZECCA P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces[M]. Berlin-New York: Walter de Gruyter, 2001.
[12]  BOTHE D. Multivalued Perturbations of m-Accretive Differential Inclusions[J]. Israel J Math, 1998, 108(1): 109-138. DOI:10.1007/BF02783044
[13]  LOI N V, DINH K T, OBUKHOVSKII V, et al. Topological Methods for Some Classes of Differential Variational Inequalities[J]. Journal of Nonlinear and Convex Analysis, 2016, 2016: 1-18.
[14]  TANG Y, FANG J. Synchronization of N-Coupled Fractional-Order Chaotic System[J]. Commun Nonlinear Sci Numer Simul, 2010, 15(2): 401-412. DOI:10.1016/j.cnsns.2009.03.024
[15]  LI Y, CHEN Y Q, PODLUBNY I. Stability of Fractional-Order Nonlinear Dynamic Systems:Lyapunov Direct Nethod and Generalized Mittag-Leffler Stability[J]. Comput Math Appl, 2010, 59(5): 1810-1821. DOI:10.1016/j.camwa.2009.08.019
[16]  徐洁, 张俊容, 刘佳. 求解一类广义均衡问题的交替方向法[J]. 西南大学学报(自然科学版), 2016, 38(5): 114-118.
[17]  ANITESCU M, TASORA A. An Iterative Approach for Cone Complementarity Problems for Non-Smooth Dynamics[J]. Comp Opt Appl, 2010, 47(2): 207-235. DOI:10.1007/s10589-008-9223-4
[18]  LI C P, ZHANG F R. A Survery on the Stability of Fractional Differential Equations[J]. Eur Phys J Special Topics, 2011, 193(1): 27-47. DOI:10.1140/epjst/e2011-01379-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133