|
- 2018
竹笋壳纤维复合材料的降解特性研究
|
Abstract:
为研究不同环境中竹笋壳纤维复合材料的降解特性,采用自然曝露法、土壤掩埋法、水性培养液法和纤维素酶法4种方法对复合材料进行了降解处理,测定了复合材料降解过程中的质量损失率以及降解后的相对结晶度、化学组分和微观形貌.结果表明:竹笋壳纤维复合材料在自然环境、土壤、水性培养液和纤维素酶缓冲溶液中有良好的降解性能,降解后的质量损失率依次为11.4%,21.0%,31.2%和34.3%,相对结晶度由空白对照组的40.7%依次增大到46.8%,53.1%,55.1%和57.7%,特征吸收峰发生了不同程度的降低. SEM分析表明,水性培养液降解使竹笋壳纤维表面变得更加粗糙,沟槽增大,出现较多剥落的碎片和较大的孔洞.土壤和纤维素酶缓冲溶液降解使竹笋壳纤维依次发生竹笋壳纤维表面胶质大量破坏和竹笋壳纤维内部剥离分层破坏,暴露出纤维单丝.
Bamboo shoot shell fiber composites were degraded by outdoor exposure test, soil burying test, aqueous medium test and cellulase test so as to study their degradability under different conditions. Their mass loss rate with degradation time was measured during the process of degradation. After degradation under the 4 different conditions, their relative crystallinity, chemical composition and microstructure were analyzed by XRD, FTIR and SEM. The results showed that the bamboo shoot shell fiber composites had good degradation performance under the outdoor exposure, soil, aqueous medium and cellulase conditions. After degradation under the 4 different conditions, the mass loss rates were 11.4%, 21.0%, 31.2% and 34.3%, and the relative crystallinities increased from 40.7% in the control to 46.8%, 53.1%, 55.1% and 57.7%, respectively. Their characteristic absorption peak values decreased in different degrees under the 4 degradation conditions. SEM analysis showed that after the aqueous medium degradation, the surface became rougher, the trench increased and there were many spalling debris and large holes. After the soil degradation, much surface glial disappeared and the monofilament fibers were exposed obviously. In the cellulose degradation, bamboo shoot shell fibers separated from each other inside and monofilament fibers appeared in large scale
[1] | 倪海燕, 付世伟, 甘应进, 等. 竹笋壳纤维的微观结构与热性能测定[J]. 南方农业学报, 2014, 45(5): 829-832. |
[2] | 关明杰, 薛明慧. 化学处理对竹笋壳润湿性的影响[J]. 农业工程学报, 2016, 32(11): 309-314. DOI:10.11975/j.issn.1002-6819.2016.11.044 |
[3] | 王溪繁, 王国和. 植物纤维增强可生物降解复合材料的研究探讨[J]. 现代丝绸科学与技术, 2011, 26(3): 118-120. |
[4] | 李晨辉, 杨岳, 贾海峰, 等. 马来酸酐干法酯化淀粉胶黏剂制备及性能研究[J]. 广东化工, 2016, 43(12): 5-7, 11. DOI:10.3969/j.issn.1007-1865.2016.12.003 |
[5] | 贾燕芳, 石伟勇. 几种笋壳的化学成分及其纤维素特征[J]. 浙江大学学报(农业与生命科学版), 2011, 37(3): 338-342. |
[6] | 黄志伟, 关明杰. 竹地板燃烧特性的锥形量热仪分析[J]. 西南大学学报(自然科学版), 2017, 39(6): 187-192. |
[7] | 周晓洁, 李建强, 陈延兴. 竹笋壳化学成分分析[J]. 武汉科技学院学报, 2010, 23(1): 1-3. |
[8] | 林珊, 林梅芳, 吴娇瑜, 等. 竹笋壳黄酮类化合物的提取及其抗氧化活性的研究[J]. 应用化工, 2012, 41(3): 465-468. |
[9] | ZHANG Jing-miao, ZHONG Zhi-wei, ZHU Zhi-wei, et al. Application of Bamboo Shoot Shell in Color Removal from Methylene Blue Solution[J]. Applied Mechanics and Materials, 2014, 675: 489-492. |
[10] | GUNTI R, PRASAD A V R, GUPATA A V S S K S. Preparation and Properties of Successive Alkali Treated Completely Biodegradable Short Jute Fiber Reinforced PLA Composites[J]. Polymer Composites, 2015, 37(7): 2160-2170. |
[11] | MAHESWARI C U, REDDY K O, MUZENDA E, et al. Extraction and Characterization of Cellulose Microfibrils from Agricultural Residue-Cocos Nucifera L.[J]. Biomass & Bioenergy, 2012, 46: 555-563. |
[12] | 崔永生, 王训遒, 宁卓远. 淀粉基生物降解塑料制备研究进展[J]. 中国塑料, 2014, 28(8): 1-6. |
[13] | 于跃, 张剑. 纤维素酶降解纤维素机理的研究进展[J]. 化学通报, 2016, 79(2): 118-122, 128. |
[14] | FRIAS M, SAVASTANO H, VILLAR E, et al. Characterization and Properties of Blended Cement Matrices Containing Activated Bamboo Leaf Wastes[J]. Cement & Concrete Composites, 2012, 34(9): 1019-1023. |
[15] | 赵丽萍, 周振明, 任丽萍, 等. 笋壳作为动物饲料利用研究进展[J]. 中国畜牧杂志, 2013, 49(13): 77-80. DOI:10.3969/j.issn.0258-7033.2013.13.020 |
[16] | 曲腾云, 于伟东. 纤维素纤维的生物降解性能[J]. 纺织学报, 2015, 36(11): 20-25. |