|
- 2017
扰动信号强度对VCSEL光子神经Spiking动力学特性的影响
|
Abstract:
理论研究了外部光注入下1 300 nm-VCSEL光子神经的spiking动力学特性. VCSEL在足够强的连续光注入下工作在稳定的注入锁定态; 在注入光中引入扰动信号后,当扰动信号强度较小时,VCSEL不能激发spike信号; 一旦扰动信号强度达到一定水平,VCSEL将激发出稳定的、可重复的spike信号,且spike信号的幅值和形状几乎不随扰动信号强度的变化而变化,但其响应速率却随扰动信号强度的增加而增大. VCSEL光子神经的这种阈值响应特性与生物神经的全或无响应特性类似,但其响应速率却比生物神经快约8个量级.
The spiking dynamics of 1 300 nm-VCSEL (Vertical Cavity Surface Emitting Laser) photonic neuron subjected to external optical injection has been theoretically investigated. Under continuous light injection with enough strength, VCSEL operates at a stable injection locking state. After introducing perturbation to continuous injection light, for relative weak perturbation, the strength of perturbation is not high enough to yield a spike response from VCSEL. Once the strength of perturbation exceeds a certain level, stable and repeatable spikes will be fired. Moreover, the spiking signals obtained from VCSEL have a similar level and shape once spiking activity is triggered independently of the strength, while the repetition rate increases with increasing perturbation strength. The threshold response characteristics of VCSEL photonic neuron is similar to that of all-or-none spike firing response in biological neurons, but is faster by 8 orders-of-magnitude
[1] | IMAM N, AKOPYAN F, ARTHUR J, et al. A Digital Neurosynaptic Core Using Event-Driven QDI Circuits [C] //Asynchronous Circuits and Systems. IEEE 18th International Symposium on Asynchronous Circuits and Systems. Lyngby: IEEE, 2012: 25-32. http://dl.acm.org/citation.cfm?id=2353338.2353597&coll=DL&dl=GUIDE |
[2] | SHASTRI B J, TAIT A N, NAHMIAS M A, et al. Photonic Spike Processing: Ultrafast Laser Neurons and an Integrated Photonic Network[J]. IEEE Photon Soc Newslett, 2014, 28(3): 4-11. |
[3] | COOMANS W, GELENS L, BERI S, et al. Solitary and Coupled Semiconductor Ring Lasers as Optical Spiking Neurons[J]. Phys Rev E, 2011, 84(3): 036209-1-036209-9. |
[4] | KRAVTSOV K., FOK M P, ROSENBLUTH D, et al. Ultrafast All-Optical Implementation of a Leaky Integrate-and-Fire Neuron[J]. Opt Express, 2011, 19(3): 2133-2147. DOI:10.1364/OE.19.002133 |
[5] | SHASTRI B J, NAHMIAS M A, TAIT A N, et al. Spiking Processing with a Graphene Excitable Laser[J]. Sci Rep, 2016(6): 19126-1-19126-12. |
[6] | WIECZOREK S, KRAUSKOPF B, LENSTRA D. Multipulse Excitability in a Semiconductor Laser with Optical Injection[J]. Phys Rev Lett, 2002, 88(6): 063901-1-063901-4. |
[7] | ALDAYA I, GOSSET C, WANG C, et al. Periodic and AperiodicPulse Generation Using Optically Injected DFB Lasers[J]. Electron Lett, 2015, 51(3): 280-282. DOI:10.1049/el.2014.3927 |
[8] | MICHALZIK R. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2013. |
[9] | KHAN M M, LESTER D R, PLANA L A, et al. SpiNNaker: Mapping Neural Networks onto AMassively-Parallel Chip Multiprocessor [C] //IEEE World Congress on Computational Intelligence 2008 IEEE International Joint Conference on Neural Networks. Hong Kong: IEEE, 2008: 2849-2856. http://www.academia.edu/2610085/SpiNNaker_mapping_neural_networks_onto_a_massively-parallel_chip_multiprocessor |
[10] | WU X Y, SAXENA V, ZHU K H, et al. A CMOS Spiking Neuron for Brain-Inspired Neural Networks Neural Networks with Resistive Synapses and In-Situ Learning[J]. IEEE Trans on Circuits and Syst. Ⅱ: Express Briefs, 2015, 62(11): 1088-1092. DOI:10.1109/TCSII.2015.2456372 |
[11] | INDIVERIG, CHICCA E, DOUGLAS R. A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses with Spike-Timing Dependent Plasticity[J]. IEEE Trans Neural Netw, 2006, 17(1): 211-221. DOI:10.1109/TNN.2005.860850 |
[12] | CASSIDY A S, GEORGIOU J, ANDREOU A G. Design of Silicon Brains in the Nano-CMOS Era: Spiking Neurons, Learning Synapses and Neural Architecture Optimization[J]. Neural Networks, 2013, 45: 4-26. DOI:10.1016/j.neunet.2013.05.011 |
[13] | BENJAMIN B V, GAO P, MCQUINN E, et al. Neurogrid: a Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations[J]. Proceedings of the IEEE, 2014, 102(5): 699-716. DOI:10.1109/JPROC.2014.2313565 |
[14] | HSU J. IBM's New Brain[J]. Spectrum IEEE ORG, 2014, 51(10): 17-19. DOI:10.1109/MSPEC.2014.6905473 |
[15] | MESARITAKIS C, KAPSALIS A, BOGRIS A, et al. Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers[J]. Sci Rep, 2016(6): 39317-1-39317-10. |
[16] | 何秀, 熊中碧, 林晓东, 等. 光注入下VCSEL在阈值附近的非线性响应特性[J]. 西南大学学报(自然科学版), 2017, 39(3): 170-175. |
[17] | 操良平, 董晓云, 梁兴连, 等. 偏振改变光反馈垂直腔面发射激光混沌系统时延特征的隐藏[J]. 西南大学学报(自然科学版), 2014, 36(7): 149-155. |
[18] | JIANG B, WU Z M, DENG T, et al. Polarization Switching Characteristics of 1 550 nm Vertical-Cavity Surface-Emitting Lasers Subject to Double Polarization Pulsed Injection[J]. IEEE J Quantum Electron, 2016, 52(11): 2400707-1-2400707-7. |
[19] | AL-SEYAB R, SCHIRES K, KHAN N A, et al. Dynamics of Polarized Optical Injection in 1 550 nm VCSELs: Theory and Experiments[J]. IEEE J Sel Top in Quantum Electron, 2011, 17(5): 1242-1249. DOI:10.1109/JSTQE.2011.2138683 |
[20] | HURTADO A, JAVALOYES J. Controllable Spiking Pattern in Long-Wavelength Vertical Surface Emitting Lasers for Neuromorphic Photonics Systems[J]. Appl Phys Lett, 2015, 107(24): 241103-1-241103-5. |
[21] | PéREZ P, VALLE A, NORIEGA I, et al. Measurement of the Intrinsic Parameters of Single-Mode VCSELs[J]. IEEE J Lightwave Technol, 2014, 32(8): 1601-1607. DOI:10.1109/JLT.2014.2308303 |
[22] | PRUCNAL P R, SHASTRI B J, LIMA T F, et al. Recent Progress in Semiconductor Excitable Lasers for Photonic Spike Processing[J]. Advances in Optics and Photon, 2016, 8(2): 228-299. DOI:10.1364/AOP.8.000228 |