全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

可分Asplund空间中随机集值隐函数的下半连续性及应用
Lower Semicontinuity of Random Implicit Multifunctions and Its Applications in Separable Asplund Spaces

DOI: 10.13718/j.cnki.xdzk.2017.09.012

Keywords: 正规上导数, 随机集值隐函数, 下半连续性, Asplund空间
normal coderivative
, random implicit multifunction, lower semicontinuity, Asplund space

Full-Text   Cite this paper   Add to My Lib

Abstract:

在可分Asplund空间中讨论随机集值隐函数的下半连续性及应用,所使用的工具主要有Ekeland变分原理、Fermat原理、Lipschitz函数的次微分以及次梯度的加法原理等.首先,给出随机集值隐函数的下半连续性成立的充分条件.其次,给出其在随机参数广义方程解映射的稳定性分析中的应用.所得结果改进了已有文献中的相关结果.
This paper is mainly devoted to discussing lower semicontinuity of random implicit multifunctions in separable Asplund spaces. The tools involved are Ekeland's variational principle, Fermat's rules, subdifferentials of Lipschitzian functions and sum rules for basic and singular subgradients. Firstly, the new sufficient conditions for the lower semicontinuity of random implicit multifunctions are given. Secondly, applications to stability analysis of solution maps for random parametric generalized equations are given. The results obtained improve the corresponding known results in literature

References

[1]  HUY N Q, YAO J C. Stability of Implicit Multifunctions in Asplund Spaces[J]. Taiwanese Journal of Mathematics, 2009, 13(1): 47-65. DOI:10.11650/twjm/1500405272
[2]  MORDUKHOVICH B S. Variational Analysis and Generalized Differentiation, Vol. Ⅰ: Basic Theory, Vol. Ⅱ: Applications[M]. Berlin: Springer, 2006.
[3]  ROBINSON S M. Stability Theory for Systems of Inequalities, Ⅱ. Differentiable Nonlinear Systems[J]. SIAM Journal on Numerical Analysis, 1976, 13(4): 497-513. DOI:10.1137/0713043
[4]  HIMMELBERG C J. Measurable Relations[J]. Fundamenta Mathematicae, 1975, 87(1): 53-72. DOI:10.4064/fm-87-1-53-72
[5]  LEE G M, TAM N N, YEN N D. Normal Coderivative for Multifunctions and Implicit Function Theorems[J]. Journal of Mathematical Analysis and Applications, 2008, 338(1): 11-22. DOI:10.1016/j.jmaa.2007.05.001
[6]  AUBIN J P, FRANKOWSKA H. Set-Valued Analysis[M]. Berlin: Birkh?user, 1990.
[7]  BONNANS J F, SHAPIRO A. Perturbation Analysis of Optimization Problems[M]. New York: Springer, 2000.
[8]  DUREA M. Openness Properties for Parametric Set-Valued Mappings and Implicit Multifunctions[J]. Nonlinear Analysis: Theory, Methods and Applications, 2010, 72(2): 571-579. DOI:10.1016/j.na.2009.06.105
[9]  DUREA M, STRUGARIU R. Quantitative Results on Openness of Set-Valued Mappings and Implicit Multifunction Theorems[J]. Pacific Journal of Optimization, 2010, 6(3): 533-549.
[10]  YANG M G, HUANG N J. Random Implicit Function Theorems in Asplund Spaces with Applications[J]. Journal of Nonlinear and Convex Analysis, 2013, 14(3): 497-517.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133