|
- 2017
一类带Hardy-Sobolev临界指数的Kirchhoff方程正解的存在性
|
Abstract:
利用变分原理和山路引理研究一类带Hardy-Sobolev临界指数的Kirchhoff方程, 得到了该方程正解的存在性.
The variational method and the mountain pass lemma are used to study a class of Kirchhoff type problems with critical weighted Hardy-Sobolev exponents, and the existence and multiplicity of their positive solutions are obtained
[1] | LEI C Y, LIAO J F and TANG C L. Multiple Positive Solutions for Kirchhoff Type of Problems with Singularity and Critical Exponents[J]. J Math Anal Appl, 2015, 421: 521-538. DOI:10.1016/j.jmaa.2014.07.031 |
[2] | LIU X, SUN Y J. Multiple Positive Solutions for Kirchhoff Type Problems with Singularity[J]. Commun Pure Appl Anal, 2013, 12: 721-733. |
[3] | NAIMEN D. The Critical Problem of Kirchhoff Type Elliptic Equations in Dimension Four[J]. J Differential Equations, 2014, 257(4): 1168-1193. DOI:10.1016/j.jde.2014.05.002 |
[4] | KANG D S, PENG S J. Positive Solutions for Singular Critical Elliptic Problems[J]. Appl Math Lett, 2005, 17(4): 411-416. |
[5] | XIE Q L, WU X P and TANG C L. Existence and Multiplicity of Solutions for Kirchhoff Type Problem with Critical Exponent[J]. Commun Pure Appl Anal, 2013, 12(6): 706-713. |
[6] | GHOUSSOUB N, YUAN C. Multiple Solutions for Quasi-Linear PDEs Involving the Critical Sobolev and Hardy Exponents[J]. Trans Amer Math Soc, 2000, 352(12): 5703-5743. DOI:10.1090/S0002-9947-00-02560-5 |
[7] | RUDIN W. Real and Complex Analysis [M]. New York:McGraw-Hill, 1966. |
[8] | RABINOWITZ P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations [M]. Providence, RI:American Mathematical Society, 1985. |
[9] | GHOUSSOUB N, KANG X S. Hardy-Sobolev Critical Elliptic Equations with Boundary Singularities[J]. Ann I H Poincaré-AN, 2004, 21(6): 767-793. DOI:10.1016/j.anihpc.2003.07.002 |