全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

利用瞬态荧光技术研究单重态激子裂变的电荷转移模型
A Charge-Transfer Model for Studying Singlet Exciton Fission with the Transient Fluorescence Technique

DOI: 10.13718/j.cnki.xdzk.2017.07.025

Keywords: 红荧烯, 激子裂变, 瞬态荧光, 电荷转移
rubrene
, exciton fission, transient fluorescence, charge transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

有机材料中单重态激子的裂变过程,由于其在有机光伏器件中的潜在应用而成为一个科学研究的热点.传统的观点采用电荷转移模型来解释激子裂变过程,即认为2个参与裂变的分子之间通过两次的电荷转移来实现分子状态的改变.而在电荷转移的物理图像中,又包括双空穴转移方式和双电子转移方式两种可能性.为了检验电荷转移模型的合理性,将能够发生激子裂变过程的红荧烯分子分别混合于其他4种有机分子中,这4种有机分子被当作间隔分子,用来分离混合膜中掺杂的红荧烯分子.对红荧烯分子与间隔分子,二者间HOMO能级的能量差构成空穴转移的隧穿势垒,而二者间LUMO能级的能量差构成电子转移的隧穿势垒.对4个样品发光衰减曲线的测量与分析表明,激子裂变的速率与电子隧穿势垒的高度具有明显的关联,这从实验角度首次印证了双电子转移模型而否定了双空穴转移模型.
Singlet exciton fission in organic materials has become a hotspot of scientific research due to its potential applications in organic photovoltaic devices. Traditionally, exciton fission can be explained with the 'charge-transfer' model, in which twice charge-transfer processes between two involving molecules lead to the state conversion. Furthermore, in the physical image of charge-transfer, there exist two possible modes: the double electron-transfer mode and the double hole-transfer mode. In order to test these models, a highly efficient fission material, i.e. rubrene, was mixed into 4 different organic materials, which acted as spacers to separate those doped rubrene molecules. For the rubrene molecules and the spacer molecules, their energy difference between HOMO levels functioned as a tunneling barrier for intermolecular hole-transfer, whereas their energy difference between LUMO levels functioned as a tunneling barrier for intermolecular electron-transfer. Measurement and analysis of the transient fluorescence decay curves of the 4 blending films showed that the rates of singlet exciton fission were highly significantly correlated with the heights of electron-tunneling barriers, thus giving a first experimental conformation for supporting the electron-transfer model and rejecting the hole-transfer model. The results presented in this work are thought to be of significant value for clarifying the physical mechanism of intermolecular singlet exciton fission, for it provides a direct experimental evidence for improving the theoretical computations based on electron-transfer images

References

[1]  SMITH M B, MICHL J. Recent Advances in Singlet Fission[J]. Annual Review of Physical Chemistry, 2013, 64(1): 361-386. DOI:10.1146/annurev-physchem-040412-110130
[2]  MA L, ZHANG K K, KLOC C, et al. Singlet Fission in Rubrene Single Crystal: Direct Observation by Femtosecond Pump-Probe Spectroscopy[J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8307-8312. DOI:10.1039/c2cp40449d
[3]  REUSSWIG P D, CONGREVE D N, THOMPSON N J, et al. Enhanced External Quantum Efficiency in an Organic Photovoltaic Cell via Singlet Fission Exciton Sensitizer[J]. Applied Physics Letters, 2012, 101(11): 113304-113307. DOI:10.1063/1.4752445
[4]  PETTERSSON K, WIBERG J, LJUNGDAHL T, et al. Interplay Between Barrier Width and Height in Electron Tunneling: Photoinduced Electron Transfer in Porphyrin-Based Donor-Bridge-Acceptor Systems[J]. Journal of Physical Chemistry A, 2006, 110(1): 319-326. DOI:10.1021/jp054420s
[5]  ALBINSSON B, ENG M P, PETTERSSON K, et al. Electron and Energy Transfer in Donor-Acceptor Systems with Conjugated Molecular Bridges[J]. Physical Chemistry Chemical Physics, 2007, 9(44): 5847-5864. DOI:10.1039/b706122f
[6]  李照兵, 罗吉勇, 孙凯, 等. 乙醇分子在Bi(111) 表面上的吸附和自组装[J]. 西南师范大学学报(自然科学版), 2016, 41(5): 1-7.
[7]  罗吉勇, 张瑶, 王纯杰, 等. 充电态和氢键诱导的超分子转子和马达[J]. 西南大学学报(自然科学版), 2016, 38(7): 1-6.
[8]  WU T C, THOMPSON N J, CONGREVE D N, et al. Singlet Fission Efficiency in Tetracene-Based Organic Solar Cells[J]. Applied Physics Letters, 2014, 104(19): 193901-1. DOI:10.1063/1.4876600
[9]  JANKUS V, SNEDDEN E W, BRIGHT D W, et al. Competition Between Polaron Pair Formation and Singlet Fission Observed in Amorphous Rubrene Films[J]. Physical Review B, 2013, 87(22): 224202-1. DOI:10.1103/PhysRevB.87.224202
[10]  PILAND G B, BURDETT J J, KURUNTHU D, et al. Magnetic Field Effects on Singlet Fission and Fluorescence Decay Dynamics in Amorphous Rubrene[J]. Journal of Physical Chemistry C, 2013, 117(3): 1224-1236. DOI:10.1021/jp309286v
[11]  ZHANG Y, LEI Y L, ZHANG Q M, et al. Thermally Activated Singlet Exciton Fission Observed in Rubrene Doped Organic Films[J]. Organic Electronics, 2014, 15(2): 577-581. DOI:10.1016/j.orgel.2013.12.010
[12]  LI J, CHEN Z H, ZHANG Q M, et al. Temperature-Dependent Singlet Exciton Fission Observed in Amorphous Rubrene Films[J]. Organic Electronics, 2015, 26: 213-217. DOI:10.1016/j.orgel.2015.07.035
[13]  GREYSON E C, VURA-WEIS J, MICHL J, et al. Maximizing Singlet Fission in Organic Dimers: Theoretical Investigation of Triplet Yield in the Regime of Localized Excitation and Fast Coherent Electron Transfer[J]. Journal of Physical Chemistry B, 2010, 114(45): 14168-14177. DOI:10.1021/jp907392q
[14]  TEICHEN P E, EAVES J D. A Microscopic Model of Singlet Fission[J]. Journal of Physical Chemistry B, 2012, 116(37): 11473-11481. DOI:10.1021/jp208905k
[15]  BERKELBACH T C, HYBERTSEN M S, REICHMAN D R. Microscopic Theory of Singlet Exciton Fission. Ⅱ. Application to Pentacene Dimers and the Role of Superexchange[J]. Journal of Chemical Physics, 2013, 138(11): 114103-1-114103-12.
[16]  ROBERTS S T, MCANALLY R E, MASTRON J N, et al. Efficient Singlet Fission Discovered in a Disordered Acene Film[J]. Journal of American Chemical Society, 2012, 134(14): 6388-6400. DOI:10.1021/ja300504t
[17]  MUSSER A J, AL-HASHIMI M, MAIURI M, et al. Activated Singlet Exciton Fission in a Semiconducting Polymer[J]. Journal of American Chemical Society, 2013, 135(34): 12747-12754. DOI:10.1021/ja405427j
[18]  MUSSER A J, LIEBEL M, SCHNEDERMANN C, et al. Evidence for Conical Intersection Dynamics Mediating Ultrafast Singlet Exciton Fission[J]. Nature Physics, 2015, 11(4): 352-357. DOI:10.1038/nphys3241
[19]  CONGREVE D N, LEE J Y, THOMPSON N J, et al. External Quantum Efficiency above 100% in a Singlet Exciton Fission Based Organic Photovoltaic Cell[J]. Science, 2013, 340(6130): 334-337. DOI:10.1126/science.1232994
[20]  KAWATA S, PU Y J, SAITO A, et al. Singlet Fission of Non-Polycyclic Aromatic Molecules in Organic Photovoltaics[J]. Advanced Materials, 2016, 28(8): 1585-1590. DOI:10.1002/adma.201504281
[21]  SMITH M B, MICHL J. Singlet Fission[J]. Chemical Review, 2010, 110(11): 6891-6936. DOI:10.1021/cr1002613
[22]  PACI I, JOHNSON C J, CHEN X D, et al. Singlet Fission for Dye-Sensitized Solar Cells: Can a Suitable Sensitizer Be Found[J]. Journal of American Chemical Society, 2006, 128(51): 16546-16553. DOI:10.1021/ja063980h

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133