全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

一类时间离散捕食者-食饵系统中的分岔研究
Neimark-Sacker Bifurcation and Route to Chaos in a Time-Discrete Predator-Prey System

DOI: 10.13718/j.cnki.xdzk.2017.07.018

Keywords: 捕食者-食饵系统, 稳定性, Neimark-Sacker分岔, 倍周期过程, 混沌路径
predator-prey system
, stability, Neimark-Sacker bifurcation, period-doubling process, route to chaos

Full-Text   Cite this paper   Add to My Lib

Abstract:

讨论了具有比率依赖型功能反应函数以及捕食者具有可替换食物源特征的时间离散捕食者-食饵系统的稳定性和Neimark-Sacker分岔.通过Jury判据确定了离散系统不动点的稳定性条件;运用中心流形定理和分岔理论分析了Neimark-Sacker分岔的存在性条件;通过数值模拟揭示了由Neimark-Sacker分岔所引起的通往混沌的路径以及混沌路径上的倍周期过程.
This research investigates the stability and Neimark-Sacker bifurcation of a time-discrete predator-prey system, which is characterized by ratio-dependent functional response and the existence of alternate food resources for the predator. Via the Jury criterion, the stability conditions of fixed points of the discrete system are determined. The existence conditions of the Neimark-Sacker bifurcation are analyzed with the center manifold theorem and the bifurcation theorem. Numerical simulations reveal a route to chaos induced by the Neimark-Sacker bifurcation and a period-doubling process in the route

References

[1]  杜文举, 张建刚, 俞建宁, 等. 三维离散类Lorenz系统的Neimark-sacker分岔[J]. 四川大学学报(自然科学版), 2015, 52(6): 1297-1302.
[2]  YUAN Li-guo, YANG Qi-gui. Bifurcation, Invariant Curve and Hybrid Control in a Discrete-Time Predator-Prey System[J]. Applied Mathematical Modelling, 2015, 39(8): 2345-2362. DOI:10.1016/j.apm.2014.10.040
[3]  JI NG, Zhu-jun, YANG Jian-ping. Bifurcation and Chaos in Discrete-Time Predator-Prey System[J]. Chaos, Solitons & Fractals, 2006, 27(1): 259-277.
[4]  CARACCIOLO D, NOTO L V, ISTANBULLUOGLU E, et al. Climate Change and Ecotone Boundaries: Insights from a Cellular Automata Ecohydrology Model in a Mediterranean Catchment with Topography Controlled Vegetation Patterns[J]. Advances in Water Resources, 2014, 73: 159-175. DOI:10.1016/j.advwatres.2014.08.001
[5]  HE Zhi-min, XIN Lai. Bifurcation and Chaotic Behavior of a Discrete-Time Predator-Prey System[J]. Nonlinear Analysis: Real World Applications, 2011, 12(1): 403-417. DOI:10.1016/j.nonrwa.2010.06.026
[6]  GUIN L N. Existence of Spatial Patterns in a Predator-Prey Model with Self-and Cross-Diffusion[J]. Applied Mathematics and Computation, 2014, 226: 320-335. DOI:10.1016/j.amc.2013.10.005
[7]  陈斯养, 靳宝. 一类具分段常数变量的捕食-食饵系统的Neimark-Sacker分支[J]. 生态学报, 2015, 35(7): 2339-2348.
[8]  LIU Xiao-li, XIAO Dong-mei. Complex Dynamic Behaviors of a Discrete-Time Predator-Prey System[J]. Chaos, Solitons & Fractals, 2007, 32(1): 80-94.
[9]  WEN Gui-lin. Criterion to Identify Hopf Bifurcations in Maps of Arbitrary Dimension[J]. Physical Review E, 2005, 72(2): 026201. DOI:10.1103/PhysRevE.72.026201
[10]  WANG Qian, FAN Meng, WANG Ke. Dynamics of a Class of Nonautonomous Semi-Ratio-Dependent Predator-Prey Systems with Functional Responses[J]. Journal of Mathematical Analysis and Applications, 2003, 278(2): 443-471. DOI:10.1016/S0022-247X(02)00718-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133