|
- 2017
q进制反射Gray码的几个注记
|
Abstract:
对整数q≥ 2给出一个计算q进制反射Gray码中码字位置的计算公式,二进制反射Gray码中码字的位置的计算公式是此公式的一个特例.另外介绍了两种各具优势的生成q进制反射Gray码的算法:其中一个算法可生成q进制反射Gray码中任意位置上的码字;另一个算法可逐个生成q进制反射Gray码中的码字.
The formula for calculating the position of a code in the binary reflected Gray codes is already known. This paper presents a formula for calculating the position of a codeword in the q-ary reflected Gray codes for any integer q≥2, and this formula takes the binary case as a special case. This paper also introduces two algorithms for generating the q-ary reflected Gray codes: the first one can generate a codeword at any position in the q-ary reflected Gray; the other one can generate a codeword that comes after any given codeword in the q-ary reflected Gray
[1] | FLORES I. Reflected Number Systems[J]. IRE Transactions on Electronic Computers, 1956, 5(2): 79-82. |
[2] | ER M C. On Generating the N-Ary Reflected Gray Codes[J]. IEEE Transactions on Computers, 1984, 100(8): 739-741. |
[3] | BRUALDI R A. Introductory Combinatorics[M]. 5th ed. New Riders: Pearson, 2009: 100-119. |
[4] | LEE E T, LEE M E. Algorithms for Generating Generalized Gray Codes[J]. Kybernetes, 2013, 28(28): 837-844. |
[5] | SHARMA B D, KHANNA R K. On m-Ary Gray Codes[J]. Information Sciences, 1978, 15(1): 31-43. DOI:10.1016/0020-0255(78)90020-8 |
[6] | LICHTNER J. Iterating an α-Ary Gray Codes[J]. SIAM J Discrete Math, 1998, 11(3): 381-386. DOI:10.1137/S0895480196308736 |
[7] | COHN M. Affine m-Ary Gray Codes[J]. Information and Control, 1963, 6(1): 70-78. DOI:10.1016/S0019-9958(63)90119-0 |
[8] | ZOU J C, LI G F, QI D X. Generalized Gray Code and Its Application in the Scrambling Technology of Digital Images[J]. Applied Mathematics a Journal of Chinese Universities, 2002, 3(3): 363-370. |
[9] | GRAY F. Pulse Code Communication: U. S, 2632058 [P]. 1953-03-17. |
[10] | IRSHID M I. Gray Code Weighting System[J]. IEEE Transactions on Information Theory, 1978, 33(6): 930-931. |