|
- 2017
Wolfe线搜索下充分下降性的FR型共轭梯度法
|
Abstract:
在FR共轭梯度法的基础之上,提出了一种新的共轭梯度法.在标准的Wolfe线搜索下,证明了该算法的充分下降性和收敛性.最后,给出初步的数值实验结果并表明该方法是有效的.
In this paper, based on the FR conjugate gradient method, a new conjugate gradient method is proposed. Under the standard Wolfe line search, the sufficient descent property and the global convergence are proved. Finally, preliminary numerical results are reported, which show that the proposed method is valid
[1] | HESTENES M R, STIEFEL E L. Methods of Conjugate Gradients for Solving Linear Systems[J]. Journal of Research of the National Bureau of Standards, 1952, 49(6): 409-436. DOI:10.6028/jres.049.044 |
[2] | LIU Y, STOREY C. Efficient Generalized Conjugate Gradient Algorithms, Part 1: Theory[J]. Journal of Optimization Theory and Applications, 1991, 69(1): 129-137. DOI:10.1007/BF00940464 |
[3] | DAI Y H, YUAN Y. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property[J]. Siam Journal on Optimization, 1999, 10(1): 177-182. DOI:10.1137/S1052623497318992 |
[4] | FLETCHER R. Practical Methods of Optimization, Vol Ⅰ: Unconstrained Optimization[M]. New York: Wiley and Sons, 1987. |
[5] | ZOUTENDIJK G. Nonlinear Programming, Computational Methods[J]. Integer and Nonlinear Programming, 1970. |
[6] | AL-BAALI M. Descent Property and Global Convergence of the Fletcher-Reeves Method with Inexact Line Search [C]. IMA Journal of Numerical Analysis. 2010: 121-124. |
[7] | DAI Y H, YUAN Y. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property[J]. Siam Journal on Optimization, 1999, 10(1): 177-182. DOI:10.1137/S1052623497318992 |
[8] | LIU G, HAN J, YIN H. Global Convergence of the Fletcher-Reeves Algorithm with Inexact Line Search[J]. APPL Math J China Univ, 1995, 10(1): 75-82. DOI:10.1007/BF02663897 |
[9] | JIANG X Z, JIAN J B. A Sufficient Descent Dai-Yuan Type Nonlinear Conjugate Gradient Method for Unconstrained Optimization Problems[J]. Nonlinear Dynamics, 2013, 72(72): 101-112. |
[10] | ANDREI N. An Unconstrained Optimization Test Functions Collection[J]. Adv Model Optim, 2008, 10(1): 147-161. |
[11] | FLETCHER R, REEVES C M. Function Minimization by Conjugate Gradients[J]. The Computer Journal, 1964, 7(2): 149-154. DOI:10.1093/comjnl/7.2.149 |
[12] | POLYAK B T. The Conjugate Gradient Method in Extremal Problems[J]. Ussr Computational Mathematics and Mathematical Physics, 1969, 9(4): 94-112. DOI:10.1016/0041-5553(69)90035-4 |
[13] | POLAK E, RIBIéRE G. Note Surla Convergence de Méthodes de Directions Conjuguées[J]. Rev. franaise Informat. recherche Opérationnelle, 1968, 16(16): 35-43. |
[14] | 戴彧虹. 非线性共轭梯度法[M]. 上海: 上海科学技术出版社, 2000. |