全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

具有自我学习机制的网络谣言传播与仿真研究
Propagation and Simulation Research of Network Rumors with Self-Learning Mechanism

DOI: 10.13718/j.cnki.xdzk.2017.05.027

Keywords: 社交网络, 谣言传播, 自我学习机制, SICR谣言传播模型, 动态转移概率
social network
, rumor propagation, self-learning mechanism, SICR rumor-spreading model, dynamic transition probability

Full-Text   Cite this paper   Add to My Lib

Abstract:

将社交网络中的个体设为健康者(S)、传播者(I)、反击者(C)和免疫者(R) 4种状态,根据不同状态之间的转移机制建立了SICR谣言传播模型.针对“人云亦云”的社会从众心理,引入个体的自我学习机制,基于BA无标度网络仿真分析了自我学习机制以及初始传播者、天然反击者重要性对谣言传播行为的影响.结果显示:自我学习机制能够促进谣言传播;初始传播者越重要,谣言传播范围越广、速度越快;天然反击者的重要性越高,抑制谣言传播的效果越明显.
The individuals in social networks are divided into four states: susceptible (S), infective (I), counterattack (C) and refractory (R), a kind of transition rule between different states is introduced, and then a new SICR rumor propagation model is established. Based on the social conformity behavior of 'follow the herd', this paper introduces a self-learning mechanism in the process of rumor propagation. The effects of self-learning mechanism and the importance of initial infective or counterattack on rumor diffusion are simulated and analyzed based on BA free-scale networks. The results show that self-learning mechanism can promote rumor diffusion; the more important the initial infective is, the wider the spreading range of the rumor will be; and the more important the initial counterattack is, the better the effect of inhibiting rumor diffusion will be

References

[1]  何大初, 刘宗华, 汪秉宏.复杂系统与复杂网络[M].北京:高等教育出版社, 2009.
[2]  王辉, 韩江洪, 邓林, 等. 基于移动社交网络的谣言传播动力学研究[J]. 物理学报, 2013, 62(11): 1-12.
[3]  顾亦然, 夏玲玲. 在线社交网络中谣言的传播与抑制[J]. 物理学报, 2012, 61(23): 1-7.
[4]  NEKOVEE M, MORENO Y, BIANCONI G, et al. Theory of Rumor Spreading in Complex Social Networks[J]. Physica A, 2007, 374: 457-470. DOI:10.1016/j.physa.2006.07.017
[5]  QIU Xiao-yan, ZHAO Lai-jun, WANG Jia-jia, et al. Effect of Time-Dependent Diffusion Behaviors on the Rumor Spreadiing in Social Networks[J]. Physics Letter A, 2016, 308: 2054-2063.
[6]  薛一波, 鲍媛媛, 易成岐. SNPR:社交网络中的新型谣言传播模型[J]. 信息网络安全, 2014(1): 5-9.
[7]  LI Dan-dan, MA Jing, TIAN Zi-hao, et al. An Evolutionary Game for the Diffusion of Rumor in Complex Networks[J]. Physica A, 2015, 433: 51-58. DOI:10.1016/j.physa.2015.03.080
[8]  TIAN Ru-ya, ZHANG Xue-fu and LIU Yi-jun. SSIC Model: A Multi-Layer Model for Intervention of Online Rumors Spreading[J]. Physica A, 2015, 427: 181-191. DOI:10.1016/j.physa.2015.02.008
[9]  ZHU Lin-he, ZHAO Hong-yong and WANG Hai-yan. Complex Dynamic Behavior of a Rumor Propagation Model with Spatial-Temporal Diffusion Terms[J]. Information Sciences, 2016, 349/350: 119-136. DOI:10.1016/j.ins.2016.02.031
[10]  万佑红, 王小初. 考虑从众效应的谣言传播模型[J]. 计算机应用, 2016, 36(9): 2381-2385. DOI:10.11772/j.issn.1001-9081.2016.09.2381
[11]  ZHAO Lai-jun, WANG Jia-jia, CHEN Yu-cheng, et al. SIHR Rumor Spreading Model in Social Networks[J]. Physica A, 2012, 391: 2444-2453. DOI:10.1016/j.physa.2011.12.008
[12]  ZAN Yong-li, WU Jian-liang, LI Ping, et al. SICR Rumor Spreading Model in Complex Networks: Counterattack and Self-Resistance[J]. Physica A, 2014, 405: 159-170. DOI:10.1016/j.physa.2014.03.021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133