全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

考虑疫苗时效及潜伏期的乙肝传染病模型分析
Analysis of an HBV Transmission Model with Vaccinal Effectiveness and Latency

DOI: 10.13718/j.cnki.xdzk.2018.05.016

Keywords: 疫苗时效, Lyapunov函数, 基本再生数, 稳定性
vaccinal effectiveness
, Lyapunov function, basic reproduction number, stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了一个考虑疫苗时效性和乙肝潜伏期的乙肝传染病模型.首先,讨论了平衡点的存在性;然后,计算了基本再生数R0,得到系统总存在一个无病平衡点,且当R0>1时,存在唯一正平衡点;最后通过构造Lyapunov泛函,证明了无病平衡点的全局稳定性和正平衡点的全局稳定性.
In this paper, an epidemic model of HBV considering the effects of vaccinal effectiveness and latency is established. First, the existence of equilibria is discussed. Then, the basic reproduction number R0 is computed, and we obtain that in the system still exists a virus-free equilibrium, and there is a unique endemic equilibrium when R0 > 1. Finally, we prove the global stabilities of the virus-free equilibrium and the endemic equilibrium by constructing Lyapunov functions

References

[1]  LIU X N, TAKEUCHI Y, IWAMI S. SVIR Epidemic Models with Vaccination Strategies[J]. Journal of Theoretical Biology, 2008, 253(1): 1-11. DOI:10.1016/j.jtbi.2007.10.014
[2]  马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法[M]. 2版. 北京: 科学出版社, 2015.
[3]  MONEIM I A, KHALIL H A. Modelling and Simulation of the Spread of HBV Disease with Infectious Latent[J]. Applied Mathematics, 2015, 6(5): 745-753. DOI:10.4236/am.2015.65070
[4]  ALEXANDER M E, BOWMAN C, MOGHADAS S M, et al. A Vaccination Model for Transmission Dynamics of Influenza[J]. Siam Journal on Applied Dynamical Systems, 2004, 3(4): 503-524. DOI:10.1137/030600370
[5]  LIANG X F, BI S L, YANG W Z, et al. Epidemiological Serosurvey of Hepatitis B in China-Declining HBV Prevalence due to Hepatitis B Vaccination[J]. Vaccine, 2013, 31(47): 6550-6557.
[6]  VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission[J]. Mathematical Biosciences, 2002, 180(1): 29-48.
[7]  HALE J K, VERDUYN L S M. Introduction to Functional Differential Equations[M]. Berlin: Springer Science & Business Media, 2013.
[8]  DUAN X C, YUAN S L, LI X Z. Global Stability of an SVIR Model with Age of Vaccination[J]. Applied Mathematics and Computation, 2014, 226: 528-540. DOI:10.1016/j.amc.2013.10.073
[9]  PANG J, CUI J A, ZHOU X. Dynamical Behavior of a Hepatitis B Virus Transmission Model with Vaccination[J]. Journal of Theoretical Biology, 2010, 265(4): 572-578. DOI:10.1016/j.jtbi.2010.05.038
[10]  LI X Z, ZHOU L L. Global Stability of an SEIR Epidemic Model with Vertical Transmission and Saturating Contact Rate[J]. Chaos Solitons & Fractals, 2009, 40(2): 874-884.
[11]  ARINO J, MCCLUSKEY C C, VAN DEN DRIESSCHE P. Global Results for an Epidemic Model with Vaccination That Exhibits Backward Bifurcation[J]. Siam Journal on Applied Mathematics, 2003, 64(1): 260-276. DOI:10.1137/S0036139902413829

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133