|
- 2018
4个树莓品种茎解剖结构与抗旱性的关系
|
Abstract:
为了比较不同树莓品种的抗旱性,为抗旱树莓品种的选择和推广提供依据,采用徒手切片的方法,以树莓茎为试材,分析了4个树莓品种茎横切面木栓层、皮层、维管束和中柱等茎解剖结构.结果表明:凯欧的木栓层细胞壁最厚,且细胞层数最多,约5~6层;莎妮和海尔特兹的木栓层细胞壁较薄,细胞层分别为3~4层和3层;南方黑树莓木栓层细胞壁最薄,仅1~2层细胞.凯欧茎皮层厚度最大,为84.33 μm;其次是莎妮,茎皮层厚度为60.07 μm;南方黑树莓和海尔特兹的皮层厚度小于莎妮,分别为48.87 μm和48.57 μm.凯欧和莎妮中柱的髓占的比例较大,南方黑树莓茎中柱的髓占的比例较小.凯欧的维管束数量最多,为33束;其次是莎妮和海尔特兹,分别为31束和30束;南方黑树莓数量最少,为20束.木质部导管的数量凯欧最多,14~56个;海尔特兹次之,为12~40个;再次是莎妮,为5~35个;最少的是南方黑树莓,为4~26个.综合分析表明:4个树莓品种中凯欧的抗旱性最强,其次是莎妮,再次是南方黑树莓,海尔特兹的抗旱性最弱.
In order to provide a basis for the selection and popularization of drought resistant raspberry varieties, the cork, cortex, vascular bundle, column and other anatomical structures of the stem in four raspberry varieties differing in drought resistance (Kiowa, Heritage, Shawnee and Focke) were studied and compared with the hand-sliced method. The results showed that of the four varieties studied Kiowa had the thickest cell wall of the cork layers in the stem, with about 5-6 cell layers, the cell wall of Shawnee and Heritage was thinner, with 3 or 4 layers, and Focke had the thinnest cell wall in the cork, with only 1-2 layers. In the cortex thickness of the stem, Kiowa was the thickest (84.33 μm), followed by Shawnee (60.07 μm), Focke (48.87 μm) and Heritage (48.57 μm). The pith of Kiowa and Shawnee in the stele was larger than that of Focke. Kiowa had the greatest number of vascular bundles (33), followed in order by Shawnee (31), Heritage (30) and Focke (20). Kiowa, Heritage, Shawnee and Focke had 14 to 56, 12 to 40, 5 to 35 and 4 to 26 ducts in their xylem, respectively. In conclusion, the drought resistance of the four raspberry varieties was in the order of Kiowa, Shawnee, Focke, Heritage
[1] | 朱金方, 夏江宝, 陆兆华, 等. 盐旱交叉胁迫对柽柳幼苗生长及生理生化特性的影响[J]. 西北植物学报, 2012, 32(1): 124-130. |
[2] | 郭长杰. 新地区树莓栽培过程中常见问题分析[J]. 中国园艺文摘, 2016, 32(11): 187-188. DOI:10.3969/j.issn.1672-0873.2016.11.078 |
[3] | 夏武峰, 唐海东, 钟必凤, 等. 11个国外树莓品种在四川雅安的引种试验[J]. 中国南方果树, 2010, 39(1): 79-81. |
[4] | 张思路. 四种植物抗旱性的研究[D]. 长春: 吉林农业大学, 2011: 7-9. |
[5] | 赵利群, 王晓冬, 李长海. 9个树莓栽培品种营养成分分析[J]. 防护林科技, 2015(6): 57-59. |
[6] | 司旭, 陈芹芹, 毕金峰, 等. 树莓主要功能性成分研究进展[J]. 食品工业科技, 2015, 36(4): 376-381. |
[7] | 张杨, 袁艺, 李纯, 等. 合肥地区树莓的引种栽培研究[J]. 中国农学通报, 2008, 24(10): 344-346. |
[8] | 陈阳, 陈雅君, 周阳, 等. 三叶草不同品种茎结构特征与抗旱性的关系[J]. 草地学报, 2012, 20(4): 686-691. DOI:10.11733/j.issn.1007-0435.2012.04.014 |
[9] | 杨武, 郭水良, 方芳. 不同生境下30种藓类植物茎的比较解剖学研究[J]. 浙江师范大学学报(自然科学版), 2007, 30(4): 440-446. |
[10] | 岳丽娜. 黑树莓再生体系的建立和农杆菌介导的耐盐基因转化[D]. 重庆: 西南大学, 2008: 12-13. |
[11] | 陈豫梅, 陈厚彬, 陈国菊, 等. 香蕉叶片形态结构与抗旱性关系的研究[J]. 热带农业科学, 2001(4): 14-16. |
[12] | 袁晓晶. 不同菊花品种茎解剖结构比较及其抗旱性分析[J]. 农家科技, 2014(8): 302. |
[13] | 王丹丹. 盐胁迫下樱桃砧木生长、生理生化及解剖结构的研究[D]. 天津: 天津农学院, 2013: 11-14. |