|
- 2018
OH自由基分子的外电场特性研究
|
Abstract:
采用MPW1PW91/Aug-cc-pvqz方法及基组探索电场对OH自由基基态分子的总能量、键长、偶极矩、谐振频率、红外谱强度、电荷布居、HOMO和LUMO能级的影响.计算结果表明:MPW1PW91方法优化得到的核间距为Re=0.096 973 nm,与实验值Re=0.096 96 nm符合得非常好,只有0.001 3%的误差;振动频率为3 739.403 cm-1,也与NIST数据库实验值3 737.76 cm-1一致;键长和红外谱强度随电场的增加先减小后增大;HOMO能和谐振频率分子总能量随电场的增加先增大后减小;偶极矩随电场增加线性地增加,LUMO能级随电场增加平缓地增加;Eg随外电场的增大先增大后减小.电场中OH自由基分子被激发至空轨道形成空穴时,该分子对电场强度具有选择性.
The density functional theoretical method with Aug-cc-pvqz basis sets (MPW1PW91/Aug-cc-pvqz) was adopted to study the total energy, bond length, dipole moment, harmonic frequency, infrared intensity, atomic charge distribution, and HOMO (the highest occupied molecular orbital energy level) and LUMO (the lowest unoccupied molecular orbital energy level) of the OH radical ground state molecules in electric fields with different intensities. The results showed that the equilibrium structure was highly consistent with experiment data, the error being 0.001 3% only. The harmonic frequency (f=3 739.403 cm-1) also well agreed with the experiment data of the NIST database (f=3 737.76 cm-1). With the increase of the external electric field, bond length and infrared intensity decreased first, and then increased; in contrast, HOMO energy level and harmonic frequency were observed to increase first and decrease afterwards. The electric dipole moments were noticed to increase linearly, and LUMO energy level was found to increase slowly. The energy gap (Eg) increased first, and then decreased. The external electric field intensity was selected by the OH radical molecules, when it was excited
[1] | 王希业. Gaussian对小分子自由基OH的研究[D]. 上海: 华东师范大学, 2007. |
[2] | 吴永刚, 李世雄, 郝进欣, 等. 外电场下CdSe的基态性质和光谱特性研究[J]. 物理学报, 2015, 64(15): 153102-1-153102-7. |
[3] | 尹跃洪, 王莉. 外电场下AgBr分子的结构及性质[J]. 原子与分子物理学报, 2017, 34(1): 9-15. |
[4] | HUBER K P, HERBERG G, LINSTROM P J, et al. Constants for Diatomic Molecules (data prepared by Gallagher, J. W. ; Johnson, R. D. in NIST ChemistryWebBook, NIST Standard Reference Database No. 69, National Institute of Standards and Technology, Gaithersburg MD, 2001, 20899. (http://webbook.nist.gov/). |
[5] | 孙明, 吴彦. OH自由基提高电晕放电烟气脱硫效率的研究[J]. 北京理工大学学报, 2005, 25(增刊): 197-200. |
[6] | 潘循皙, 陈士明, 严小敏, 等. 顺磁共振法测定气相中OH自由基的研究[J]. 环境科学, 1999, 20(6): 30-33. |
[7] | 李权, 朱正和. CH, NH和OH自由基基态与低激发态分子结构与势能函数[J]. 物理学报, 2006, 55(1): 102-106. |
[8] | MAILLARD J P, CHAUVILLE J, MANTZ A W. High-Resolution Emission Spectrum of OH in an Oxyacetylene Flame from 3.7 to 0.9 μm[J]. Journal of Molecular Spectroscopy, 1976, 63(1): 120-141. DOI:10.1016/0022-2852(67)90139-7 |
[9] | 魏波, 骆仲泱, 徐飞, 等. 脉冲电晕放电中OH自由基的发射光谱研究[J]. 光谱学与光谱分析, 2010, 30(2): 293-296. |
[10] | 郝进欣, 吴永刚, 李世雄, 等. (TiO2)3团簇分子电致激发特性的密度泛函理论研究[J]. 西南师范大学学报(自然科学版), 2015, 40(9): 30-35. |
[11] | RUSCIC B, WAGNER A F, HARDING L B, et al. On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl[J]. The Journal of Physical Chemistry A, 2002, 106(11): 2727-2747. DOI:10.1021/jp013909s |
[12] | 吴学科, 梁冬梅, 荆涛. 外电场作用下L1OH分子的特性研究[J]. 原子与分子物理学报, 2014, 31(2): 187-191. |
[13] | 马海涛, 边文生, 郑世钧, 等. OH自由基的高精度量子化学研究[J]. 化学学报, 2005, 63(4): 263-268. |
[14] | 其木苏荣, 赵永芳, 井孝功, 等. 自由基OH(X2Π, A2Σ+)的从头算研究[J]. 原子与分子物理学报, 2003, 20(1): 77-77. |
[15] | 黄多辉, 王藩侯, 朱正和. 外电场下氮化铝分子结构和光谱研究[J]. 化学学报, 2008, 66(13): 1599-1603. DOI:10.3321/j.issn:0567-7351.2008.13.018 |