|
- 2018
基于ITS序列的竹亚科植物分子鉴定研究
|
Abstract:
利用ITS序列对竹亚科13个属76个竹种进行DNA条形码分子鉴定.该研究提取慈竹属、刚竹属、箬竹属、唐竹属、矢竹属、大明竹属、赤竹属、巴山木竹属、倭竹属、短穗竹属、簕竹属、酸竹属及少穗竹属共13个属62个竹种DNA,对其内转录间隔区ITS序列进行PCR扩增和双向测序,所得序列与GenBank数据库下载的14条ITS序列共76个竹种序列用Clustal X软件比对,再利用MEGA6.06软件构建K2P距离法的NJ系统发育树.结果显示,种内遗传距离为0~3.907,平均遗传距离为0.370;种间遗传距离为0~4.394,平均遗传距离为2.287,种内遗传距离远小于种间遗传距离.ITS序列可用于竹类资源的物种鉴定研究.
Molecular identification was conducted of 76 species of 13 genera in Bambusoideae by nuclear internal transcribed spacer (ITS) sequence fragments. DNA was extracted from 62 bamboo species of 13 genera (Neosinocalamus, Phyllostachys, Indocalamus, Sinobambusa, Pseudosasa, Pleioblastu, Sas, Bashani, Shibataea, Brachystachyum, Bambusa, Acidosasa and Oligostachyum), and PCR amplification and bidirectional sequencing of the 62 ITS sequences were carried out. Then the 62 ITS sequences obtained were aligned with 14 ITS sequences from GenBank database by Clustal X, and MEGA program (version 6.06) was employed to estimate the intraspecific and interspecific genetic distances. NJ(Neighbor-Joining)trees were constructed based on K2P (Kimura-2-parameter) distance of the ITS sequences in order to evaluate the results. Results showed that the intraspecific genetic distance was much smaller than the interspecific genetic distance:the intraspecific genetic distance was 0-3.907, averaging 0.370; and the interspecific genetic distance was 0-4.394, averaging 2.287. In conclusion, ITS barcodes can be used to distinguish different species of Bambusoideae
[1] | ZHANG Li-na, ZHANG Xian-zhi, ZHANG Yu-xiao, et al. Identification of Putative Orthologous Genes for the Phylogenetic Reconstruction of Temperate Woody Bamboos (Poaceae:Bambusoideae)[J]. Molecular Ecology Resources, 2014, 14(5): 988-99. |
[2] | 丁雨龙. 刚竹属(Phyllostachys)系统分类的研究[D]. 南京: 南京林业大学, 1998. |
[3] | 杨汉奇, 李德铢. 中国竹亚科空竹属的整理[J]. 植物分类与资源学报, 2015, 37(5): 546-550. |
[4] | 师玉华, 孙伟, 方广宏, 等. 凉茶药材鸡蛋花及其混伪品的DNA条形码鉴定[J]. 中国中药杂志, 2014, 39(12): 2199-2203. |
[5] | 宁淑萍, 颜海飞, 郝刚, 等. 植物DNA条形码研究进展[J]. 生物多样性, 2008, 16(5): 417-425. |
[6] | CLARK L G, LONDO N O X, RUIZ-SANCHEZ E. Bamboo Taxonomy and Habitat[J]. Bamboo, 2015, 10(2): 1-30. |
[7] | MA P F, ZHANG Y X, ZENG C X, et al. Chloroplas Phylogenomic Analyses Resolve Deep-Level Relationships of an Intractable Bamboo Tribe Arundinarieae (Poaceae)[J]. Systematic Biology, 2014, 63(6): 933-950. DOI:10.1093/sysbio/syu054 |
[8] | LAHAYE R, BANK M V D, BOGARIN D, et al. From the Cover:DNA Barcoding the Floras of Biodiversity Hotspots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2923-2928. DOI:10.1073/pnas.0709936105 |
[9] | 任保青, 陈之瑞. 植物DNA条形码技术[J]. 植物学报, 2010, 45(1): 1-12. |
[10] | 朱芳明, 杜建伟, 周国贤, 等. 基于DNA序列分析的刚竹属系统树构建[J]. 西部林业科学, 2015(2): 63-68. |
[11] | TAMURA K, PETERSON D, PETERSON N, et al. MEGA5:Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods[J]. Molecular Biology & Evolution, 2011, 28(10): 2731-2739. |
[12] | SONG H X, GAO S P, JIANG M Y, et al. The Evolution and Ribosomal ITS Sequences in Bambusinae and Related Species:Divergence, Pseudogenes, and Implications for Phylogeny[J]. Journal of Genetics, 2012, 91(2): 129-139. DOI:10.1007/s12041-012-0170-6 |
[13] | 张光楚, 陈富枢. 竹类杂交育种的研究[J]. 林业与环境科学, 1986(3): 1-5. |
[14] | ZHOU M B, LU J J, HAO Z, et al. Distribution and Diversity of PIF-Like Transposable Elements in the Bambusoideae Subfamily[J]. Plant Science, 2010, 179(3): 257-266. DOI:10.1016/j.plantsci.2010.05.012 |
[15] | 胡成华, 汤敬杉. 倭竹族花序演化的探讨[J]. 广西植物, 1991, 11(2): 141-145. |
[16] | 张汉尧, 刘小珍, 龚秀会, 等. 竹子DNA提取方法的改良及ITS-RFLP分析的初步研究[J]. 江西林业科技, 2006(3): 3-5. |
[17] | YAO H, SONG J Y, MA X Y, et al. Identification of Dendrobium Species by a Candidate DNA Barcode Sequence:the Chloroplast psbA-trnH Intergenic Region[J]. Planta Medica, 2009, 75(6): 667-669. DOI:10.1055/s-0029-1185385 |