全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

秋华柳抗氧化酶系统对镉胁迫的响应
Response of the Antioxidant Enzyme System of Salix variegata Franch to Cadmium Stress

DOI: 10.13718/j.cnki.xdzk.2017.10.004

Keywords: 秋华柳, Cd胁迫, 抗氧化酶
variegated willow (Salix variegata)
, cadmium stress, antioxidant enzyme

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用水培方式,研究了秋华柳在不同的镉(Cd)质量浓度梯度:0 mg/L(CK),2 mg/L(T1),10 mg/L(T2),20 mg/L(T3),50 mg/L(T4)下的氧化胁迫程度及其叶片抗氧化酶系统对Cd胁迫的响应特征.结果表明:1)秋华柳叶片MDA质量分数与Cd胁迫质量浓度呈显著正相关关系,胁迫12 d后MDA质量分数极显著增加,表明植物生理功能早期出现暂时性修复后细胞膜损伤程度显著增加.2)不同质量浓度和时间的Cd胁迫下,植物抗氧化酶活性表现出不同的变化规律,不同酶活性存在不同的阈值.3)SOD和CAT酶活性随着Cd处理时间的延长和质量浓度的增加均呈先上升后下降的趋势,与对照相比始终保持着高活性状态;在氧化胁迫前期,APX酶具有较高的酶活性,在Cd解毒前期中起主要作用;随着Cd胁迫程度的增加,GR酶活性升高,与Cd胁迫质量浓度呈极显著正相关关系.4)秋华柳叶片中POD酶活性与Cd处理质量浓度间无统计学意义.5)在耐受Cd的阈值内,秋华柳叶片抗氧化酶系统通过活性变化的协同作用,共同应对Cd胁迫.表明秋华柳抗氧化酶系统对Cd既具有解毒功能,也是Cd毒性的作用位点.
The degree of oxidative stress can be determined through the amount of malondialdehyde (MDA) present within the leaf, while information about the anti-oxidative defense systems within the leaf can be obtained through the abundance of super oxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR). A hydroponic experiment with different cadmium treatments (Cd2+ 0, 2, 10, 20 and 50 mg/L) was conducted over 18 days in order to investigate the effects of cadmium on oxidative stress and the response of the anti-oxidative defense systems in the leaf of Salix variegata to cadmium stress. The concentrations of MDA and the aforementioned enzymes were then analyzed once the experiment was completed. A significant positive correlation was shown to exist between MDA content in the leaf of S. variegata and cadmium concentration, MDA content being significantly higher after 12 days of treatment, which implied that the degree of oxidative stress increased significantly after a temporary repair of the plant physiological function. The enzymes that made up the anti-oxidative defense system in the leaf played different roles when S. variegata was under cadmium stress. This implied that different enzymes of the anti-oxidative defense system had different thresholds. The activities of the SOD and CAT showed a similar trend in change:they first increased with increasing Cd treatment concentration and time, followed then by a decline, always maintaining a relatively high activity in comparison with the CK. In the early stage of the oxidative stress, the activity of APX maintained relatively high activities, suggesting an important role in defending against the toxicity of cadmium. The activity of GR in the leaf of S. variegata increased steadily with increasing cadmium stress, exhibiting a highly significant positive correlation between them. No significant correlation was detected between POD activity and cadmium

References

[1]  龚继明. 重金属污染的缓与急[J]. 植物生理学报, 2014, 50(5): 567-568.
[2]  王振中, 张友梅, 邓继福, 等. 重金属在土壤生态系统中的富集及毒性效应[J]. 应用生态学报, 2006, 17(10): 1948-1952. DOI:10.3321/j.issn:1001-9332.2006.10.033
[3]  汤叶涛, 关丽捷, 仇荣亮, 等. 镉对超富集植物滇苦菜抗氧化系统的影响[J]. 生态学报, 2010, 30(2): 324-332.
[4]  SUN R L, ZHOU Q X, SUN F H, et al. Antioxidative Defense and Proline/Phytochelatin Accumulation in A Newly Discovered Cd-Hyperaccumulator, L[J]. Environmental & Experimental Botany, 2007, 60(3): 468-476.
[5]  房辉, 曹敏. 云南会泽废弃铅锌矿重金属污染评价[J]. 生态学杂志, 2009, 28(7): 1277-1283.
[6]  袁祖丽, 吴中红. 镉胁迫对烟草根抗氧化能力和激素含量的影响[J]. 生态学报, 2010, 30(15): 4109-4118.
[7]  窦俊辉, 喻树迅, 范术丽, 等. SOD与植物胁迫抗性[J]. 分子植物育种, 2010, 8(2): 359-364.
[8]  尹永强, 胡建斌, 邓明军. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J]. 中国农学通报, 2007, 23(1): 105-110.
[9]  XIANG C, OLIVER D J. Glutathione Metabolic Genes Coordinately Respond to Heavy Metals and Jasmonic Acid in Arabidopsis[J]. Plant Cell, 1998, 10(9): 1539-1550. DOI:10.1105/tpc.10.9.1539
[10]  BI Y H, CHEN W L, ZHANG W N, et al. Production of Reactive Oxygen Species, Impairment of Photosynthetic Function and Dynamic Changes in Mitochondria are Early Events in Cadmium-Induced Cell Death in Arabidopsis thaliana[J]. Biology of the Cell, 2009, 101(11): 629-643. DOI:10.1042/BC20090015
[11]  ROMERO-PUERTAS M C, MCCARTHY I, SANDALIO L M, et al. Cadmium Toxicity and Oxidative Metabolism of Pea Leaf Peroxisomes[J]. Free Radical Research, 1999, 31(Suppl): S25-S31.
[12]  DIXITR V, PANDEY V, SHYAM R. Differential Antioxidative Responses to Cadmium in Roots and Leaves of Pea (Pisum sativum L. cv. Azad)[J]. Journal of Experimental Botany, 2001, 52(358): 1101-1109. DOI:10.1093/jexbot/52.358.1101
[13]  KAPOOR D, KAUR S, BHARDWAJ R. Physiological and Biochemical Changes in Brassica Juncea Plants under Cd-Induced Stress[J]. Biomed Research International, 2014(5): 726070-726083.
[14]  JIN X, YANG X, ISLAM E, et al. Effects of Cadmium on Ultrastructure and Antioxidative Defense System in Hyperaccumulator and Non-Hyperaccumulator Ecotypes of Sedum alfredii Hance[J]. Journal of Hazardous Materials, 2008, 156(1-3): 387-397. DOI:10.1016/j.jhazmat.2007.12.064
[15]  张艳红, 曾波, 付天飞, 等. 长期水淹对秋华柳(Salix variegata Franch.)根部非结构性碳水化合物含量的影响[J]. 西南师范大学学报(自然科学版), 2006, 31(3): 153-156.
[16]  夏民旋, 王维, 袁瑞, 等. 超氧化物歧化酶与植物抗逆性[J]. 分子植物育种, 2015, 13(11): 2633-2646.
[17]  ALSCHER R G, ERTURK N, HEATH L S. Role of Superoxide Dismutases (SODs) in Controlling Oxidative Stress in Plants[J]. Journal of Experimental Botany, 2002, 53(372): 1331-1341. DOI:10.1093/jexbot/53.372.1331
[18]  SCHUTZENDUBEL A, POLLE A. Plant Responses to Abiotic Stresses:Heavy Metal-Induced Oxidative Stress and Protection by Mycorrhization[J]. Journal of Experimental Botany, 2002, 53(372): 1351-1365.
[19]  廖源林, 蔡仕珍, 邓辉茗, 等. 苦楝叶片抗氧化系统对Cd2+胁迫的响应[J]. 东北林业大学学报, 2015, 43(11): 22-27. DOI:10.3969/j.issn.1000-5382.2015.11.005
[20]  孙晓灿, 魏虹, 谢小红, 等. 水培条件下秋华柳对重金属Cd的富集特性及光合响应[J]. 环境科学研究, 2012, 25(2): 220-225.
[21]  贾中民, 魏虹, 孙晓灿, 等. 秋华柳和枫杨幼苗对镉的积累和耐受性[J]. 生态学报, 2011, 31(1): 107-114.
[22]  刘媛, 马文超, 张雯, 等. 镉胁迫对秋华柳根系活力及其Ca、Mg、Mn、Zn、Fe积累的影响[J]. 应用生态学报, 2016, 27(4): 1109-1115.
[23]  SCHUZENDUBEL A, SCHWANZ P, TEICHMANN T, et al. Cadmium-Induced Changes in Antioxidative Systems, Hydrogen peroxide Content, and Differentiation in Scots pine Roots[J]. Plant Physiology, 2001, 127(3): 887-898. DOI:10.1104/pp.010318
[24]  杨牟, 何平, 段才绪, 等. 外源SNP, Spd对盐碱胁迫下射干幼苗体内抗氧化酶活性的影响[J]. 西南大学学报(自然科学版), 2015, 37(6): 13-19.
[25]  李燕, 刘可慧, 于方明, 等. Mn对超富集植物短毛蓼(Polygonum pubescens Blume.)抗氧化机理的影响[J]. 农业环境科学学报, 2011, 30(12): 2422-2427.
[26]  WU F, ZHANG G, DOMINY P. Four Barley Genotypes Respond Differently to Cadmium:Lipid Peroxidation and Activities of Antioxidant Capacity[J]. Environmental & Experimental Botany, 2003, 50(1): 67-78.
[27]  KACALLKOVA L, TLUSTOSl P, SZAKOVA J. Phytoextraction of Risk Elements by Willow and Poplar Trees[J]. International Journal of Phytoremediation, 2015, 17(1-6): 414-421.
[28]  钱永强, 周晓星, 韩蕾, 等. 3种柳树叶片PSⅡ叶绿素荧光参数对Cd2+胁迫的光响应[J]. 北京林业大学学报, 2011, 33(6): 8-14.
[29]  李璇, 岳红, 王升, 等. 影响植物抗氧化酶活性的因素及其研究热点和现状[J]. 中国中药杂志, 2013, 38(7): 973-978.
[30]  NOCTOR G, FOYER C H. Ascorbate and Glutathione:Keeping Active Oxygen under Contro[J]. Annual Review of Plant Biology, 1998, 49(4): 249-279.
[31]  ROMERO-PUERTAS M C, CORPAS F J, RODRIGUEZ-SERRANO M, et al. Differential Expression and Regulation of Antioxidative Enzymes by Cadmium in Pea Plants[J]. Journal of Plant Physiology, 2007, 164(10): 1346-1357. DOI:10.1016/j.jplph.2006.06.018
[32]  RODRIGUEZ-CELMA J, RELLAN-ALVAREZ R, ABADIA A, et al. Changes Induced by Two Levels of Cadmium Toxicity in the 2-DE Protein Profile of Tomato Roots[J]. Journal of Proteomics, 2010, 73(9): 1694-1706. DOI:10.1016/j.jprot.2010.05.001
[33]  BESSON-BARD A, WENDEHENNE D. Nitric Oxide Contributes to Cadmium Toxicity in Arabidopsis by Promoting Cadmium Accumulation in Roots and by Up-Regulating Genes Related to Iron Uptake[J]. Plant Physiology, 2009, 149(3): 1302-1315. DOI:10.1104/pp.108.133348
[34]  张义凯, 崔秀敏, 杨守祥, 等. 外源NO对镉胁迫下番茄活性氧代谢及光合特性的影响[J]. 应用生态学报, 2010, 21(6): 1432-1438.
[35]  ELAVARTHI S, MARTIN B. Spectrophotometric Assays for Antioxidant Enzymes in Plants[J]. Methods in Molecular Biology, 2010, 639: 273-281. DOI:10.1007/978-1-60761-702-0
[36]  CHAMSEDDINE M, WIDED B A, GUY H, et al. Cadmium and Copper Induction of Oxidative Stress and Antioxidative Response in Tomato (Solanum lycopersicon) Leaves[J]. Plant Growth Regulation, 2009, 57(1): 89-99. DOI:10.1007/s10725-008-9324-1
[37]  史静, 潘根兴, 夏运生, 等. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响[J]. 生态环境学报, 2013, 22(5): 832-837.
[38]  贾中民, 程华, 魏虹, 等. 三峡库区岸生植物秋华柳对镉胁迫的光合响应[J]. 林业科学, 2012, 48(6): 152-158. DOI:10.11707/j.1001-7488.20120623
[39]  CHEN L, HAN Y, JIANG H, et al. Nitrogen Nutrient Status Induces Sexual Differences in Responses to Cadmium in Populus yunnanensis[J]. Journal of Experimental Botany, 2011, 62(14): 5037-5050. DOI:10.1093/jxb/err203
[40]  PERFUS-BARBEOCH L, LEONHARDT N, VAVASSEUR A, et al. Heavy Metal Toxicity:Cadmium Permeates Through Calcium Channels and Disturbs the Plant Water Status[J]. Plant Journal, 2002, 32(4): 539-548. DOI:10.1046/j.1365-313X.2002.01442.x
[41]  KHOSHGOFTARMANESH AH, KHODARAHMI S, HAGHIGHI M. Effect of Silicon Nutrition on Lipid Peroxidation and Antioxidant Response of Cucumber Plants Exposed to Salinity Stress[J]. Archives of Agronomy & Soil Science, 2013, 60(5): 639-653.
[42]  MISHRA S, SRIVASTAVA S, TRIPATHI R D, et al. Phytochelatin Synthesis and Response of Antioxidants During Cadmium Stress in Bacopa monnieri L[J]. Plant Physiology & Biochemistry, 2006, 44(1): 25-37.
[43]  SREENIVASULU N, GRIMM B, WOBUS U, et al. Differential Response of Antioxidant Compounds to Salinity Stress in Salt-Tolerant and Salt-Sensitive Seedlings of Foxtail Millet (Setaria italica)[J]. Physiologia Plantarum, 2000, 109(4): 435-442. DOI:10.1034/j.1399-3054.2000.100410.x
[44]  QIU R L, ZHAO X, TANG Y T, et al. Antioxidative Response to Cd in A Newly Discovered Cadmium Hyperaccumulator, Arabis paniculata F[J]. Chemosphere, 2008, 74(1): 6-12. DOI:10.1016/j.chemosphere.2008.09.069

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133