全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

符号树的最小秩问题
The Minimum Rank Problem of Signed Trees

DOI: 10.13718/j.cnki.xdzk.2017.10.010

Keywords: 符号矩阵, 有向二部图, 符号树, 最小秩
sign pattern matrix
, directed bipartite graph, signed tree, minimum rank

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于符号模式矩阵P,可借助于它的伴随图来分析P的符号特征.本文研究了对称符号树和非对称符号树的最小秩问题,并将符号树转换为有向二部图,给出了计算对称符号树和非对称符号树的最小秩的算法.
For an sign pattern matrix P, we can analyze its sign characteristics with the help of its associated digraph. In this paper, we convert the signed trees into directed bipartite graphs to study the minimum rank problems of symmetric and asymmetric signed trees and provide an algorithm for computing the minimum ranks of symmetric and asymmetric signed trees

References

[1]  HELTON J W, KLEP I, GOMEZ R. Determinant Expansions of Signed Matrices and of Certain Jacobians[J]. Siam Journal on Matrix Analysis & Applications, 2009, 31(2): 732-754.
[2]  江世明, 李敬文, 江红豆. 图的点可区别边染色猜想的算法[J]. 西南大学学报(自然科学版), 2016, 38(10): 47-54.
[3]  BRUALDI R A, SHADER B L. Matrices of Sign-Solvable Linear Systems[M]. Cambridge University Press, 1995.
[4]  LI Z S, GAO Y B, ARAV M, et al. Sign Patterns with Minimum Rank Two and Upper Bounds on Minimum Ranks[J]. Linear & Multilinear Algebra, 2014, 61(7): 895-908.
[5]  张先迪, 李正良. 图论及其应用[M]. 北京: 高等教育出版社, 2005.
[6]  BARIOLI F, FALLAT S M, TRACY HALL H, et al. On the Minimum Rank of not Necessarily Symmetric Matrices: A Preliminary Study[J]. Electronic Journal of Linear Algebra Ela, 2009, 18(1): 126-145.
[7]  董威, 贾西贝, 李小慧, 等. 随机图的邻点可区别I-全染色算法[J]. 西南师范大学学报(自然科学版), 2015, 40(4): 8-15.
[8]  HOGBEN L. A Note on Minimum Rank and Maximum Nullity of Sign Patterns[J]. Electron Jarnal of Linear Algebra Ela, 2011, 22(1): 203-213.
[9]  DEALBA L M, HARDY T L, HENTZEL I R, et al. Minimum Rank and Maximum Eigenvalue Multiplicity of Symmetric Tree Sign Patterns[J]. Linear Algebra & Its Applications, 2006, 418(2): 389-415.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133