|
- 2017
月球着陆器过渡轨道的数值仿真
|
Abstract:
针对月球背面着陆器过渡轨道的选择问题,选择南极艾德肯盆地SPA作为登陆位置,设计了月球正面远月点100 km高程,背面SPA为近月点10 km高程的椭圆型过渡轨道,利用动力学方法和月球高阶重力场模型GRGM660PRIM,对该轨道进行了仿真分析.结果表明,着陆器的在轨时间接近7 d,其中近月点在SPA中心平坦区域的时间超过3 d.较长的在轨时间有利于后续着陆决策操作的准备,说明该设计的初始轨道根数具有一定的实际意义,可为着陆器的成功登陆提供一定程度的参考.
As to the lander's transition orbit on the farside of the moon, this paper proposes an elliptic orbit with an apogee of 100 km on the nearside and a perigee over the South Pole-Aitken SPA basin. Employing the dynamic method and the recent high precision gravity field model GRGM660PRIM, we make a simulation and an analysis of this transition orbit. The results indicate that the lander on such an orbit can keep running for approximately 7 days and, especially, remain over the flat region of the SPA for more than 3 days, which is favorable for landing decision. The initial Kepler orbit elements suggested here may be of great help for the lander's successful landing
[1] | NEUMANN G A, ZUBER M T. The Lunar Crust: Global Structure and Signature of Major Basins[J]. Journal of Geophysical Research, 1996, 101(E7): 16841-16843. DOI:10.1029/96JE01246 |
[2] | 平劲松, 黄倩, 鄢建国, 等. 基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01[J]. 中国科学G辑, 2008, 38(11): 1601-1612. |
[3] | 曹建峰. "嫦娥二号"平动点和小行星探测试验中的轨道计算[D]. 上海: 中国科学院上海天文台, 2013. http://d.wanfangdata.com.cn/Thesis/Y2381888 |
[4] | LEMOINE F G, GOOSSENS S, SABAKA T J, et al. High-Degree Gravity Models from GRAIL Primary Mission Data[J]. Journal of Geophysical Research: Planets, 2013, 118(8): 1676-1698. DOI:10.1002/jgre.v118.8 |
[5] | HEISKANEN W A, MORITZ H. Physical Geodesy[M]. San Francisco: W H Freeman, 1967. |
[6] | SMITH D E, ZUBER M T, NEUMANN G A, et al. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA)[J]. Geophys Res Lett, 2010, 37(18): 1-6. |
[7] | ARKANI-HAMED J. The Lunar Mascons Revisited[J]. Journal of Geophysical Research, 1998, 103(E2): 3709-3739. DOI:10.1029/97JE02815 |
[8] | 叶茂, 李斐, 鄢建国, 等. GRAIL月球重力场模型定轨性能分析[J]. 武汉大学学报(信息科学版), 2016, 41(1): 93-98. |
[9] | ROWLANDS D D, MARSHALL J A, MCCARTHY J, et al. GEODYN Ⅱ System Description. Vols. 1-5 [R]. Greenbelt, MD: Hughes STX Corp, 2000. |
[10] | 钟振, 李斐, 鄢建国, 等. 新近月球重力场模型的比较与分析[J]. 武汉大学学报(信息科学版), 2013, 38(4): 390-393. |
[11] | XIAO L, ZHU P, FANG G, et al. A Yong Multilayered Terraine of the Northern Mare Imbrium Revealed by Chang'E-3 Mission[J]. Science, 2015, 347(6227): 1226-1229. DOI:10.1126/science.1259866 |
[12] | LI F, YE M, YAN J G, et al. A Simulation of the Four-Way lunar Lander Orbiter Tracking Mode for the Chang'E-5 Mission[J]. Advances in Space Research, 2016, 57(11): 2376-2384. DOI:10.1016/j.asr.2016.03.007 |
[13] | WIECZOREK M A, SIMONS F J. Minimum-Variance Multitaper Spectral Estimation on the Sphere[J]. The Journal of Fourier Analysis and Applications, 2007, 13(6): 665-692. DOI:10.1007/s00041-006-6904-1 |