全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于新近重力场模型MRO120D的火星探测器轨道仿真与分析
Simulation and Analysis of Martian Explorer Orbits Based on the New Gravity Field Model MRO120D

DOI: 10.13718/j.cnki.xdzk.2018.05.021

Keywords: 火星重力场, 扁率摄动, 大气阻力, 火星探测器, 在轨时间
Martian gravity field
, oblateness perturbation, atmospherical drag, Mars spacecraft, orbiting time

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对火星探测器在轨运行时间的问题,利用动力学方法和最新火星重力场模型MRO120D,对220 km和150 km初始轨道高度的火星探测器进行轨道仿真分析.结果表明,考虑重力场模型二阶位系数C20时,探测器在220 km轨道高度能够在计算时间内长期稳定地运行,不考虑该系数的探测器在轨运行时间不足40 d,说明位系数C20是稳定轨道的重要因素.在相同条件下,探测器在150 km轨道高度运行时间不足18 d,说明大气阻力效应对低轨探测器的影响较大.在满足相关科学任务的条件下,建议初始轨道设计在220 km以上,以此获得较长的在轨运行时间.
To understand the influence of Mars probe orbit on its orbiting time, this paper makes simulation and analysis of the orbit of a Mars probe with a preliminary orbit height of 220 or 150 km, using a dynamic method and the recent Martian gravity filed model MRO120D. The results show that the probe that considers the two-order coefficient C20 of the gravity field model runs stably in the set cycle of orbiting time at a height of 220 km and that the probe with no consideration of C20 stays on the orbit for only 40 days, indicating a crucial role of C20 in orbiting time. With the same method and data, the probe with a height of 150 km lasts less than 18 days. This result indicates that Martian atmosphere has a major effect on low Mars satellites. In order for a probe to orbit for a long time, we propose a height of more than 220 km for Mars satellites when other scientific objectives are satisfied

References

[1]  BRUINSMA S, LEMOINE F G. A Preliminary Semi Empirical Thermosphere Model of Mars: DTM-Mars[J]. Journal of Geophysical Research, 2002, 107(E10): 1-3.
[2]  YAN J G, LI F, PING J S, et al. A Simulation of Martian Gravity Field Recovery by Using a Near Equatorial Orbiter[J]. Advance in Space Research, 2012, 49(5): 1019-2017. DOI:10.1016/j.asr.2011.12.006
[3]  MARTIN T V. Geodyn System Description[M]. Washington: EG&G Washington Analytical Services Center, Inc, 1980.
[4]  GENOVA A, GOOSSENS S, LEMOINE F G, et al. Seasonal and Static Gravity Filed of Mars from MGS, Mars Odyssey and MRO Radio Science[J]. Icarus, 2016, 272: 228-245. DOI:10.1016/j.icarus.2016.02.050
[5]  吴季, 朱光武, 赵华, 等. 萤火一号火星探测计划的科学目标[J]. 空间科学学报, 2009, 29(5): 449-455. DOI:10.11728/cjss2009.05.449
[6]  HEISKANEN W A, MORITZ H. Physical Geodesy[M]. San Francisco: Springer, 2006.
[7]  GENOVA A, GOOSSENS S, LEMOINE F G, et al. Long-Term Variability of CO2 and O in the Mars Upper Atmosphere from MRO Radio Science Data[J]. Journal of Geophysical Research: Planets, 2015, 120(5): 849-868. DOI:10.1002/2014JE004770
[8]  KONOPLIV A S, YODER C, STANDISH E, et al. A Global Solution for the Mars Static and Seasonal Gravity, Mars Orientation, Phobos and Deimos Masses, and Mars Ephemerides[J]. Icarus, 2006, 182(1): 23-50. DOI:10.1016/j.icarus.2005.12.025
[9]  SMITH D E, ZUBER M T, TORRENCE M H, et al. Time Variations of Mars' Gravitational Field and Seasonal Changes in the Masses of the Polar Ice Caps[J]. Journal of Geophysical Research, 2009, 114(5): 05002-05016.
[10]  KONOPLIV A S, PARK R S, FOLKNER W M. An Improved JPL Mars Gravity Field and Orientation from Mars Orbiter and Lander Tracking Data[J]. Icarus, 2016, 274: 253-260. DOI:10.1016/j.icarus.2016.02.052
[11]  朱仁璋, 王鸿芳, 泉浩芳, 等. 火星使命"福布斯-土壤"/"萤火"一号分析[J]. 载人航天, 2010, 16(2): 1-14.
[12]  KAULA W M. Theory of Satellite Geodesy: Applications of Satellites to Geodesy[M]. New York: Dover Publications, 2000.
[13]  叶茂, 李斐, 鄢建国, 等. 深空探测器精密定轨与重力场解算系统(WUDOGS)及其应用分析[J]. 测绘学报, 2017, 46(3): 288-296. DOI:10.11947/j.AGCS.2017.20160525

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133