全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

求解大规模非光滑优化问题的一种修正Hestenes-Stiefel共轭梯度算法
A Modified Hestenes-Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization Problems

DOI: 10.13718/j.cnki.xdzk.2018.05.013

Keywords: 非光滑, 大规模, 共轭梯度法, 充分下降条件, 全局收敛性
nonsmooth
, large-scale, conjugate gradient method, sufficient descent condition, global convergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用Moreau-Yosida正则化技术和非单调线搜索技术,设计了一种针对大规模非光滑优化问题的修正Hestenes-Stiefel共轭梯度算法.该算法的搜索方向不仅自动满足充分下降条件,而且属于信赖域.在适当条件下,新算法全局收敛.初步的数值实验也表明新算法对于求解大规模非光滑无约束凸优化问题是有效的.
This paper gives a modified Hestenes-Stiefel conjugate gradient algorithm for large-scale nonsmooth optimization problems, using the Moreau-Yosida regulation approach in combination with the nonmonotone line search technique. The search direction of the algorithm not only possesses the sufficient descent property but also belongs to a trust region. The new algorithm has the global convergence under proper conditions. A preliminary numerical experiment shows that the algorithm proposed herein is more effective than the normal method for large-scale non-smooth unconstrained convex optimization problems

References

[1]  POLAK E, RIBIERE G. Note Sur La Convergence de Directions Conjugèes[J]. Revue Francaise Informatique Recherche Operationnelle, 3e Annèe, 1969, 16(3): 35-43.
[2]  HESTENES M R, STIEFEL E. Method of Conjugate Gradient for Solving Linear Equation[J]. Journal of Research of the National Bureau of Standards, 1952, 49(6): 409-436. DOI:10.6028/jres.049.044
[3]  LIU Y, STOREY C. Efficient Generalized Conjugate Gradient Algorithms, Part 1: Theory[J]. Journal of Optimization Theory and Application, 1991, 69(1): 129-137. DOI:10.1007/BF00940464
[4]  HIRIART-URRUTY J B, LEMARECHAL C. Convex Analysis and Minimization Algorithms Ⅱ[M]. Berlin: Springer, 1993.
[5]  HAARALA M, MIETTINEN K, MAKELA M M. New Limited Memory Bundle Method for Large-Scale Nonsmooth Optimization[J]. Optimization Methods and Software, 2004, 19(6): 673-692. DOI:10.1080/10556780410001689225
[6]  BONNAN J F, GILBERT J C, LEMARECHAL C, et al. A Family of Variable Metric Proximal Methods[J]. Mathematical Programming, 1995, 68(1): 15-47.
[7]  ZHANG H, HARGER W W. A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization[J]. SIAM Journal on Optimization, 2006, 14(4): 1043-1056.
[8]  POLYAK B T. The Conjugate Gradient Method in Extreme Problem[J]. USSR Computational Mathematics and Mathematical Physics, 1969, 9(4): 94-112. DOI:10.1016/0041-5553(69)90035-4
[9]  YUAN G. L, WEI Z X, LI G Y. A Modified Polak-Ribière-Polyak Conjugate Gradient Algorithm for Nonsmooth Convex Programs[J]. Journal of Computational and Applied Mathematics, 2014, 255(1): 86-96.
[10]  FUKUSHIMA M, QI L. A Global and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization[J]. SIAM Journal on Optimization, 1996, 6(4): 1106-1120. DOI:10.1137/S1052623494278839
[11]  FLETCHER R, REEVES C. Function Minimization by Conjugate Gradients[J]. The Computer Journal, 1964, 7(12): 149-154.
[12]  CORREA R, LEMARECHAL C. Convergence of some Algorithms for Convex Minimization[J]. Mathematical Programming, 1993, 62(1): 261-273.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133