全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类时延网络控制系统的有限时间镇定
Finite-Time Stabilization for a Class of Networked Systems with Delay

DOI: 10.13718/j.cnki.xdzk.2018.07.021

Keywords: 网络控制系统, 时延, 有限时间镇定
networked control system (NCS)
, delay, finite-time stabilization

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了一类具有状态时延的网络控制系统的有限时间镇定问题.基于Lyapunov函数法,得到线性矩阵不等式形式的状态反馈控制器设计的充分条件,该状态反馈控制器使得网络控制系统有限时间稳定.最后,给出一个数值算例说明了该方法的有效性、可行性.
The finite-time stabilization problem for a class of networked control systems with state delay is considered in this paper. Based on the Lyapunov theorem, a sufficient condition for the design of a state feedback controller which makes the closed loop system finite-time stable is provided. The sufficient condition is given in terms of linear matrix inequality. Finally, a numerical example is presented to demonstrate the validity and feasibility of the proposed methodology

References

[1]  YUE D, HAN Q L, LAM J. Network-Based Robust H∞ Control of a Systems with Uncertainty[J]. Automatica, 2005, 41(6): 999-1007. DOI:10.1016/j.automatica.2004.12.011
[2]  姚合军, 袁付顺. 不确定时延网络控制系统的变结构保成本控制[J]. 西南大学学报(自然科学版), 2012, 34(9): 107-112.
[3]  VATANSKI N. Networked Control with Delay Measurement and Estimation[J]. Control Engineering Practice, 2009, 17(2): 231-244. DOI:10.1016/j.conengprac.2008.07.004
[4]  EI-GOHARY A. Optimal Control of an Angular Motion of a Rigid Body Suring Infinite and Finite-Time Intervals[J]. Appl Math Comput, 2003, 141: 541-551.
[5]  DORATO. Short Time Stability in Linear Time-Varying Systems[C]. Proceeding of IRE International Convention Record. New York: IEEE Computer Society Press, 1961, 4: 83-87.
[6]  EI-GOHARY A, AI-RUZAIAZA A S. Optimal Control of Non-Homogenous Prey-Predator Models During Infinite and Finite-Time Intervals[J]. Appl Math Comput, 2003, 146(2-3): 495-508.
[7]  AMATO F, ARIOLA M. Finite-Time Control of Discrete-Time Linear System[J]. IEEE Trans Automat Control, 2005, 50(6): 724-729.
[8]  MOULAY E, PERRUQUETTI W. Finite Time Stability and Stabilization of a Class of Continuous Systems[J]. J Math Anal Appl, 2006, 323(2): 1430-1443. DOI:10.1016/j.jmaa.2005.11.046
[9]  AMATO F, ARIOLA M, DORATE P. Finite-Time Stabilization via Dynamic Output Feedback[J]. Automatica, 2006, 42(2): 337-342. DOI:10.1016/j.automatica.2005.09.007
[10]  WEISS L, INFANTE E F. Finite Time Stability Under Perturbing Forces and on Product Spaces[J]. IEEE Trans Automat Control, 1967, 12: 54-59. DOI:10.1109/TAC.1967.1098483
[11]  AMATO F, ARIOLA M, DORATE P. Finite-Time Control of Linear Systems Subject to Parametric Uncertainties and Disturbances[J]. Automatica, 2001, 37(9): 1459-1463. DOI:10.1016/S0005-1098(01)00087-5
[12]  苏晓贝, 赵亦欣, 吴小军, 等. 网络控制系统中改进型模糊反馈调度策略研究[J]. 西南大学学报(自然科学版), 2015, 37(12): 97-101.
[13]  Amato F, ARIOLA M, COSENTINO C. Finite-Time Control of Discrete-Time Linear Systems:Analysis and Design Conditions[J]. Automatica, 2010, 46(5): 919-924. DOI:10.1016/j.automatica.2010.02.008
[14]  MOULAY E, DAMBRINET M, YEGANEFAR N, et al. Finite-Time Stability and Stabilization of Time-Delay Systems[J]. Systems Control Letters, 2008, 57(1): 561-566.
[15]  YAN H C, HUANG X H, WANG M, et al. Delay-Dependent Stability Criteria for a Class of Networked Control Systems with Multi-Input and Multi-Output[J]. Chaos, Solitons & Fractals, 2007, 34(3): 997-1005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133