全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于凸壳的在线单类学习机
A One-Class Online Classifier Based on Convex Hull

DOI: 10.13718/j.cnki.xdzk.2018.12.025

Keywords: 在线学习, 单类, 分类, 凸壳
online learning
, one-class, classification, convex hull

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的基于支持向量机的单类分类器因计算复杂度高而无法满足大规模数据实时处理的需求,在线学习方法为解决该问题提供了一种有效途径.本文在挖掘样本数据在特征空间分布性状的基础上,提出了一种基于凸壳的在线单类学习机(One-class Online Classifier based on Convex Hull,OOCCH).该方法首先使用凸壳的定义选择能代表特征空间中数据分布的凸壳向量对应的原始样本作为训练样本来缩减训练集的规模;其次在分类器在线更新阶段利用凸壳向量动态地调整分类器的训练样本.理论分析证明了OOCCH的有效性,与现有的在线单类分类器的实验比较,OOCCH在训练时间和分类性能方面有显著优势.
Facing the challenge of large-scale data processing, the traditional SVM(support vector machine) based one-class classifier suffers from its high computational complexity. The online learning technique is an effective way to solve this problem. In this paper, a one-class online classifier based on convex hull (OOCCH) is proposed by considering the distribution characteristics of the data in the feature space. In order to reduce the number of training sets, OOCCH selects the samples corresponding to the convex hull vectors in the feature space as training samples. In the online update stage of the classifier, OOCCH dynamically adjusts the training samples based on the definition of convex hull. Theoretical analysis proves the effectiveness of OOCCH. Compared with the existing online one-class classifiers in experiments, OOCCH has significant advantages in training time and classification performance

References

[1]  WANG T, CHEN J, ZHOU Y, et al. Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection[J]. Sensors, 2013, 13(12): 17130-17155. DOI:10.3390/s131217130
[2]  KIVINEN J, SMOLA A J, WILLIAMSON R C. Online Learning with Kernels[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2165-2176. DOI:10.1109/TSP.2004.830991
[3]  YANG H Q, LYU M R, KING I. Efficient Online Learning for Multitask Feature Selection[J]. ACM Transactions on Knowledge Discovery from Data, 2013, 7(2): 1-27.
[4]  ZHENG J, SHEN F, FAN H, et al. An Online Incremental Learning Support Vector Machine for Large-Scale Data[J]. Neural Computing and Applications, 2013, 22(5): 1023-1035. DOI:10.1007/s00521-011-0793-1
[5]  LANGFORD J, LI L H, ZHANG T. Sparse Online Learning via Truncated Gradient[J]. Journal of Machine Learning Research, 2009, 10(2): 777-801.
[6]  GU X Q, CHUNG F L, ISHIBUCHI H S, et al. Imbalanced TSK Fuzzy Classifier by Cross-Class Bayesian Fuzzy Clustering and Imbalance Learning[J]. IEEE Transactions on Systems, Man, and Cybernetics Systems, 2017, 47(8): 2005-2020. DOI:10.1109/TSMC.2016.2598270
[7]  潘志松, 陈斌, 缪志敏, 等. One-Class分类器研究[J]. 电子学报, 2009, 37(11): 2498-2503.
[8]  LIU B, XIAO Y, YU P S, et al. Uncertain One-Class Learning and Concept Summarization Learning on Uncertain Data Streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(2): 468-484.
[9]  SAITOH D, HARA K. Mutual Learning Using Nonlinear Perceptron[J]. Journal of Artificial Intelligence and Soft Computing Research, 2015, 5(1): 71-77. DOI:10.1515/jaiscr-2015-0020
[10]  TAX D M J, DUIN R P W. Support Vector Data Description[J]. Machine Learning, 2004, 54(1): 45-66.
[11]  LIU J C, MIAO Q G, SUN Y N, et al. Modular Ensembles for One-Class Classification Based on Density Analysis[J]. Neurocomputing, 2016, 171(C): 262-276.
[12]  KRAWCZYK B, WOZNIAK M. One-Class Classifiers with Incremental Learning and Forgetting for Data Streams with Concept Drift[J]. Soft Computing, 2015, 19(12): 3387-3400. DOI:10.1007/s00500-014-1492-5
[13]  UDDIN M S, KUH A. Online Least-squares One-Class Support Vector Machine for Outlier Detection in Power Grid Data[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE, 2016: 2628-2632.
[14]  KRAWCZYK B, WOZNIAK M, CYGANEK B. Clustering-Based Ensembles for One-Class Classification[J]. Information Sciences, 2014, 264(6): 182-195.
[15]  张辉荣, 唐雁, 何荧, 等. 面向分类数据的重叠子空间聚类算法SCCAT[J]. 西南大学学报(自然科学版), 2016, 38(3): 171-176.
[16]  MANEVITZ L, YOUSEF M. One-Class Document Classification via Neural Networks[J]. Neurocomputing, 2007, 70(7/9): 1466-1481.
[17]  ZHANG M, WU J, LIN H, et al. The Application of One-Class Classifier Based on CNN in Image Defect Detection[J]. Procedia Computer Science, 2017, 114: 341-348. DOI:10.1016/j.procs.2017.09.040
[18]  WANG D, QIAO H, ZHANG B. Online Support Vector Machine Based on Convex Hull Vertices Selection[J]. IEEE Transaction on Neural Networks and Learning Systems, 2013, 24(4): 593-609. DOI:10.1109/TNNLS.2013.2238556
[19]  SHALEV-SHWARTZ S, SINGER Y, SREBRO N, et al. Pegasos: Primal Estimated Sub-Gradient Solver for SVM[C]//The 24th International Conference on Machine Learning. Corvalis, USA: ACM, 2007: 807-814.
[20]  UC Irvine Machine Learning Repository. UCI database[EB/OL].[2013-1-12]. https://archive.ics.uci.edu/ml/datasets.html.
[21]  梁修荣, 杨正益. 基于聚类和SVM的数据分类方法与实验研究[J]. 西南师范大学学报(自然科学版), 2018, 43(3): 91-96.
[22]  KRELL M M, WILSHUSEN N, SEELAND A, et al. Classifier Transfer with Data Selection Strategies for Online Support Vector Machine Classification with Class Imbalance[J]. Journal of Neural Engineering, 2017, 14(2): 025003. DOI:10.1088/1741-2552/aa5166
[23]  BATUWITA R, PALADE V. FSVM-CIL:Fuzzy Support Vector Machines for Class Imbalance Learning[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(3): 558-571. DOI:10.1109/TFUZZ.2010.2042721
[24]  CHANG C C, LIN C J. LIBSVM:A Library for Support Vector Machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133