全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于fNIRS的符号和非符号数量加工的脑机制研究
An fNIRS-Based Study on the Brain Mechanism of Symbolic and Non-symbolic Number Processing

DOI: 10.13718/j.cnki.xdzk.2018.12.020

Keywords: 符号数量加工, 非符号数量加工, 符号特异性, 符号非特异性, 转换机制
symbolic number processing
, non-symbolic number processing, notation-dependent, notation-independent, conversion mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探讨符号和非符号数量加工的特异性和非特异性问题以及二者间相互转换的神经机制,利用功能性近红外光谱成像技术(fNIRS)对30名成人进行测量,实验中让被试完成数量适应范式任务,结果发现:①非符号数量加工主要激活脑区为右顶上叶、右额上回和左右额中回,而符号数量加工则主要在左额中回有显著激活,且只有符号数量加工中出现了距离效应;②非符号向符号数量转换由左右顶上叶、左额上回和左右额中回负责,而符号向非符号数量转换则是由左顶上叶和左右额上回负责.研究结果既支持了符号和非符号数量加工的特异性观点,又进一步揭示符号和非符号数量相互转换有着不同的神经机制.
This study mainly explored whether the symbolic and non-symbolic number processing are notation-dependent or notation-independent, as well as the neural mechanism of mutual conversion between symbolic and non-symbolic numbers. Using functional near-infrared spectroscopy (fNIRS), we monitored the oxy-hemoglobin signal changes of 30 adults performing the adaptation paradigm tasks. The fNIRS results showed that non-symbolic number processing had an activation of the right superior parietal lobe, right superior frontal gyrus and bilateral middle frontal gyrus while symbolic number processing produced an activation of the left middle frontal gyrus only, that symbolic number processing elicited a distance effect, and that the conversion of non-symbolic to symbolic number processing activated bilateral superior parietal lobe while the conversion of symbolic to non-symbolic number processing had an activation of left superior parietal lobe and bilateral superior frontal gyrus. These results support the viewpoint that the symbolic and non-symbolic number processing is notation-dependent and indicate that the neural mechanism of conversion from symbol to non-symbol number processing is different from that of conversion from non-symbol to symbol number processing

References

[1]  LYONS I M, ANSARI D, BEILOCK S L. Qualitatively Different Coding of Symbolic andNonsymbolic Numbers in the Human Brain[J]. Human Brain Mapping, 2014, 36(2): 475-488.
[2]  DUAN L, ZHANG Y J, ZHU C Z. Quantitative Comparison of Resting-State Functional Connectivity Derived from fNIRS and fMRI:A Simultaneous Recording Study[J]. Neuroimage, 2012, 60(4): 2008-2018. DOI:10.1016/j.neuroimage.2012.02.014
[3]  SOKOLOWSKI H M, FIAS W, MOUSA A, et al. Common and Distinct Brain Regions in Both Parietal and Frontal Cortex Support Symbolic and Nonsymbolic Number Processing in Humans:A Functional Neuroimaging Meta-Analysis[J]. Neuroimage, 2017, 146: 376-394. DOI:10.1016/j.neuroimage.2016.10.028
[4]  LYONS I M, ANSARI D. Foundations of Children's Numerical and Mathematical Skills:The Roles of Symbolic andNonsymbolic Representations of Numerical Magnitude[J]. Advances in Child Development and Behavior, 2015, 48: 93-116. DOI:10.1016/bs.acdb.2014.11.003
[5]  PETERS L, POLSPOEL B, DE BEECK H O, et al. Brain Activity During Arithmetic in Symbolic and Non-Symbolic Formats in 9 to 12-Year Old Children[J]. Neuropsychologia, 2016, 86: 19-28. DOI:10.1016/j.neuropsychologia.2016.04.001
[6]  PIAZZA M. Neurocognitive Start-Up Tools for Symbolic Number Representations[J]. Trends in Cognitive Sciences, 2010, 14(12): 542-551. DOI:10.1016/j.tics.2010.09.008
[7]  HOLLOWAY I D, PRICE G R, ANSARI D. Common and Segregated Neural Pathways for the Processing of Symbolic andNonsymbolic Numerical Magnitude:An fMRI Study[J]. Neuroimage, 2010, 49(1): 1006-1017. DOI:10.1016/j.neuroimage.2009.07.071
[8]  MATEJKO AA, ANSARI D. Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling[J]. Plos One, 2016, 11(3): 1-15.
[9]  DIETRICH J F, HUBER S, MOELLER K, et al. The Influence of Math Anxiety on Symbolic and Non-Symbolic Magnitude Processing[J]. Frontiers in Psychology, 2015, 6(1621): 1-10.
[10]  SOLTéSZ F, SZVCS D. Neural Adaptation to Non-Symbolic Number and Visual Shape:An Electrophysiological Study[J]. Biological Psychology, 2014, 103: 203-211. DOI:10.1016/j.biopsycho.2014.09.006
[11]  JOSEPH T, JOACHIM M, AVISHAI H. Automatic and Intentional Processing of Numerical Information[J]. Journal of Experimental Psychology:Learning Memory and Cognition, 1992, 18(1): 166-179. DOI:10.1037/0278-7393.18.1.166
[12]  HYDE D C, BOAS D A, BLAIR C, et al. Near-Infrared Spectroscopy Shows Right Parietal Specialization for Number in Pre-Verbal Infants[J]. Neuroimage, 2010, 53(2): 647-652. DOI:10.1016/j.neuroimage.2010.06.030
[13]  HOSHI Y, KOBAYASHI N, TAMURA M. Interpretation of Near-Infrared Spectroscopy Signals:A Study with a Newly Developed Perfused Rat Brain Model[J]. Journal of Applied Physiology, 2001, 90(5): 1657-1662. DOI:10.1152/jappl.2001.90.5.1657
[14]  LYONS I M, ANSARI D, BEILOCK S L. Symbolic Estrangement:Evidence Against a Strong Association Between Numerical Symbols and the Quantities They Represent[J]. Journal of Experimental Psychology General, 2012, 141(4): 635-641. DOI:10.1037/a0027248
[15]  DEHAENE S, MEHLER J. Cross-Linguistic Regularities in the Frequency of Number Words[J]. Cognition, 1992, 43(1): 1-29.
[16]  VERGUTS T, FIAS W. Representation of Number in Animals and Humans:A Neural Model[J]. Journal of Cognitive Neuroscience, 2004, 16(9): 1493-1504. DOI:10.1162/0898929042568497
[17]  LIBERTUS M E, BRANNON E M. Behavioral and Neural Basis of Number Sense in Infancy[J]. Current Directions in Psychological Science, 2009, 18(6): 346-351. DOI:10.1111/j.1467-8721.2009.01665.x
[18]  VANBINST K, GHESQUIōRE P, SMEDT B D. Numerical Magnitude Representations and Individual Differences in Children's Arithmetic Strategy Use[J]. Mind, Brain, and Education, 2012, 6(3): 129-136. DOI:10.1111/mbe.2012.6.issue-3
[19]  PIAZZA M, PINEL P, BIHAN D L, et al. A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex[J]. Neuron, 2007, 53(2): 293-305. DOI:10.1016/j.neuron.2006.11.022
[20]  DEHAENE S, DEHAENE-LAMBERTZ G, COHEN L. Abstract Representations of Numbers in the Animal and Human Brain[J]. Trends in Neurosciences, 1998, 21(8): 355-361. DOI:10.1016/S0166-2236(98)01263-6
[21]  LINSEN S, VERSCHAFFEL L, REYNVOET B, et al. The Association Between Numerical Magnitude Processing and Mental Versus Algorithmic Multi-Digit Subtraction in Children[J]. Learning and Instruction, 2015, 35: 42-50. DOI:10.1016/j.learninstruc.2014.09.003
[22]  MATTHEWS P G, LEWIS M R, HUBBARD E M. Individual Differences inNonsymbolic Ratio Processing Predict Symbolic Math Performance[J]. Psychological Science, 2015, 27(2): 191-202.
[23]  HOLLOWAY I D, ANSARI D. Developmental Specialization in the Right Intraparietal Sulcus for the Abstract Representation of Numerical Magnitude[J]. Journal of Cognitive Neuroscience, 2010, 22(11): 2627-2637. DOI:10.1162/jocn.2009.21399
[24]  SOKOLOWSKI H M. Common and Distinct Brain Regions Support Numerical and Non-Numerical Magnitude Processing: A FunctionalNeuroimaging Meta-Analysis[D]. London Ontario Canada: The University of Western Ontario, 2015.
[25]  SASANGUIE D, SMEDT B D, REYNVOET B. Evidence for Distinct Magnitude Systems for Symbolic and Non-Symbolic Number[J]. Psychological Research, 2017, 81(1): 231-242. DOI:10.1007/s00426-015-0734-1
[26]  SZVCS D, KILLIKELLY C, CUTINI S. Event-Related Near-Infrared Spectroscopy Detects Conflict in the Motor Cortex in a Stroop Task[J]. Brain Research, 2012, 1477: 27-36. DOI:10.1016/j.brainres.2012.08.023
[27]  KADOSH R C, KADOSH K C, KAAS A, et al. Notation-Dependent and-Independent Representations of Numbers in the Parietal Lobes[J]. Neuron, 2007, 53(2): 307-314. DOI:10.1016/j.neuron.2006.12.025
[28]  HOLLOWAY I D, BATTISTA C, VOGEL S E, et al. Semantic and Perceptual Processing of Number Symbols:Evidence from a Cross-Linguistic fMRI Adaptation Study[J]. Journal of Cognitive Neuroscience, 2013, 25(3): 388-400. DOI:10.1162/jocn_a_00323

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133