|
- 2018
一类偏序线性代数上的Freudenthal谱定理
|
Abstract:
利用一类特殊的偏序线性代数上的极大投影的概念,讨论了其上的Freudenthal谱定理,不同于以往的方法,仅仅使用了偏序和Dedekind σ完备的基本概念.最后,给出了一个偏序线性代数的例子,它不是格,但是Freudenthal谱定理依然成立.
Using the conception of the maximal projection of the special class of partially ordered linear algebras, we prove the spectral theorem on the partially ordered linear algebras. Specially, only rudimentary concepts such as partial ordering, Dedekind σ completeness are used in this work. Finally, we propose one partially ordered linear algebra, which is not a lattice, but the Freudenthal spectral theorem still holds
[1] | 罗俊丽, 乔希民, 吴洪博. 区间集上非交换剩余格Fuzzy布尔滤子的特征性质[J]. 西南师范大学学报(自然科学版), 2016, 41(4): 20-24. |
[2] | 杨明歌, 廖开方. Banach空间中非凸广义方程的度量次正则性[J]. 西南大学学报(自然科学版), 2015, 37(9): 77-81. |
[3] | DAI T Y. On Some Special Classes of Partially Ordered Linear Algebras[J]. J Math Anal Appl, 1972, 40(3): 649-682. DOI:10.1016/0022-247X(72)90011-X |
[4] | TOUMI M A. A Simple Proof for a Theorem of Luxemburg and Zaanen[J]. J Math Anal Appl, 2006, 322(2): 1231-1234. DOI:10.1016/j.jmaa.2005.10.044 |
[5] | DAI T Y, DEMARR R. A Property for Inverses in a Partially Ordered Linear Algebra[J]. Trans Amer Math Soc, 1976, 215: 285-292. DOI:10.1090/S0002-9947-1976-0382116-2 |
[6] | DEMARR R. On Partially Ordering Operator Algebras[J]. Canad J Math, 1967, 19(2): 636-643. |
[7] | FREUDENTHAL H. Teilweise Geordneten Moduln[J]. Proc Kon Ned Akad van Wetensch, 1936, 39: 641-651. |
[8] | WóJTOWICZ M. On a Weak Freudenthal Spectral Theorem[J]. Comment Math Univ Carolin, 1992, 33(4): 631-643. |
[9] | GELLAR R. 0 ≤ X2 ≤ X[J]. Trans Amer Math Soc, 1972, 173: 341-352. |
[10] | LUXEMBERG W A J, ZAANEN A C. Riesz Spaces, I[M]. Amsterdam-London: North-Holland Publishing Company, 1971. |
[11] | LAVRI? B. On Freudenthal's Spectral Theorem[J]. Indagat Math, 1986, 89(4): 411-421. DOI:10.1016/1385-7258(86)90026-0 |
[12] | BACHMAN G, NARICI L. Functional Analysis[M]. New York: Dover Publications, 2000. |
[13] | STEEN S W P. An Introduction to the Theory of Operators I[J]. Proc London Math Soc, 1936, 41(5): 361-392. |
[14] | LIPECKI Z. On Binary-Type Approximations in Vector Lattices[J]. Arch Math, 1994, 62(6): 545-553. DOI:10.1007/BF01193743 |