全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于饱和发生率的随机HIV模型的动力学研究
A Stochastic Model for HIV Dynamics with Saturation Incidence

DOI: 10.13718/j.cnki.xdzk.2018.03.016

Keywords: 随机模型, 饱和发生率, 灭绝性, 随机持续性
stochastic model
, saturated incidence rate, extinction, stochastic persistence

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了一个带饱和发生率的随机HIV模型.首先分析了全局正解的存在性和有界性,进一步通过构造Lyapunov函数得到了病毒灭绝和持续的条件.
In this paper, a stochastic HIV model with saturation rate is established. First, the existence and boundedness of the global positive solutions are proved. Then, by constructing Lyapunov function, the conditions of extinction and persistence for the stochastic HIV model with saturation rate are obtained

References

[1]  NOWAK M A, BONHOEKER S, HILL A M, et al. Viral Dynamics in Hepatities B Virus Infection[J]. Proc Natl Acad Sci USA, 1996, 93(9): 4398-4402. DOI:10.1073/pnas.93.9.4398
[2]  HUANG G, TAKEUCHI Y, KOROBEINIKOV A. HIV Evolution and Progression of the Infection to AIDS[J]. Journal of Theoretical Biology, 2012, 307: 149-159. DOI:10.1016/j.jtbi.2012.05.013
[3]  ELAIW A M. Global Properties of a Class of HIV Models[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4): 2253-2263. DOI:10.1016/j.nonrwa.2009.07.001
[4]  MAO X R. Stability of Stochastic Differential Equations with Markovian Switching[M]. Stochastic Processes and Their Applications, 2007.
[5]  李巧玲. 具有饱和发生率的时滞HIV-1感染模型动力学研究[D]. 长沙: 湖南大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10532-1012328185.htm
[6]  WEI F Y, CHEN F X. Stochastic Permanence of an SIQS Epidemic Model with Saturated Incidence and Independent Random Perturbations[J]. Physica A, 2016, 453: 99-107. DOI:10.1016/j.physa.2016.01.059
[7]  ZHAO Y N, JIANG D Q. The Threshold of a Stochatic SIS Epidemic Model with Vaccination[J]. Applied Mathematics and Computation, 2014, 243: 718-727. DOI:10.1016/j.amc.2014.05.124
[8]  DALAL N, GREENHALGH D. MAO X R, A Stochastic Model for Internal HIV Dynamics[J]. Journal of Mathematical Analysis and Applications, 2008, 341(2): 1084-1101. DOI:10.1016/j.jmaa.2007.11.005
[9]  付瑞, 王稳地, 陈虹燕, 等. 一类考虑饱和发生率的HIV感染模型的稳定性分析[J]. 西南大学学报(自然学科版), 2015, 37(3): 76-81.
[10]  JIANG D Q, LIU Q, SHI N Z. Dynamics of a Stochastic HIV-1 Infection Model with Logistic Growth[J]. Physica A, 2017, 469: 706-717. DOI:10.1016/j.physa.2016.11.078

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133