全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类两种群都染病的捕食—食饵模型分析
A Predator-Prey Mathematical Model with Both the Populations Affected by Diseases

DOI: 10.13718/j.cnki.xdzk.2018.05.015

Keywords: 捕食—食饵模型, Hurwitz判据, Lyapunov函数, 全局渐近稳定性
prey-predator model
, Hurwitz criterion, Lyapunov function, globally asymptotic stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了一类两种群都染病的捕食—食饵模型,证明了解的正性和最终有界性;利用Hurwitz判据,得到了边界平衡点局部渐近稳定的充要条件并发现系统的正平衡点是不稳定的;通过构造适当的Lyapunov函数,给出了边界平衡点全局稳定的充分条件.
In this paper, a predator-prey mathematical model with both the populations affected by diseases is proposed. The positivity and ultimate boundedness of the solution is proved. The necessary and sufficient conditions for the locally asymptotic stability of the boundary equilibrium are established by using Hurwitz criterion. And the positive equilibrium point is proved to be always unstable. The sufficient conditions for the globally asymptotic stability of the boundary equilibrium are given by constructing some reasonable Lyapunov functions

References

[1]  HAQUE M. A Predator-Prey Model with Disease in the Predator Species Only[J]. Nonlinear Analysis Real World Applications, 2010, 11(4): 2224-2236. DOI:10.1016/j.nonrwa.2009.06.012
[2]  杨秀香. 具有双线性传染率的捕食-食饵种群传染病模型分析[J]. 渭南师范学院学报, 2017, 32(4): 5-10.
[3]  XIAO Y N, CHEN L S. Modeling and Analysis of a Predator-Prey Model with Disease in the Prey[J]. Mathematical Biosciences, 2001, 171(1): 59-82. DOI:10.1016/S0025-5564(01)00049-9
[4]  GREENHALGH D, HAQUE M. A Predator-Prey Model with Disease in the Prey Species Only[J]. Mathematical Methods in the Applied Sciences, 2010, 30(8): 911-929.
[5]  RAHMAN M S, CHAKRAVARTY S. A Predator-Prey Model with Disease in Prey[J]. Nonlinear Analysis Modelling and Control, 2013, 2(2): 191-209.
[6]  JI C Y, JIANG D Q. Analysis of a Predator-Prey Model with Disease in the Prey[J]. International Journal of Biomathematics, 2013, 06(03): 1-21.
[7]  刘俊利, 贾滢, 张太雷. 仅食饵有病的生态传染病模型的全局性态分析[J]. 合肥工业大学学报(自然科学版), 2017, 40(6): 860-864.
[8]  李爽, 王小攀. 食饵和捕食者均染病的捕食-被捕食模型的分析[J]. 河南师范大学学报(自然科学版), 2016(2): 1-8.
[9]  马知恩, 周义仓, 王稳地, 等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004.
[10]  HALE J K, VERDUYN LUNEL S M. Introduction to Functional Differential Equations[M]. Berlin: Springer Science & Business Media, 2013.
[11]  DAS K P, KUNDU K, CHATTOPADHYAY J. A Predator-Prey Mathematical Model with both the Populations Affected by Diseases[J]. Ecological Complexity, 2011, 8(1): 68-80. DOI:10.1016/j.ecocom.2010.04.001
[12]  HADELER K P, FREEDMAN H I. Predator-Prey Populations with Parasitic Infection[J]. Journal of Mathematical Biology, 1989, 27(6): 609-631. DOI:10.1007/BF00276947
[13]  李庆, 李有文. 捕食者与食饵都染病的捕食-被捕食模型分析[J]. 数学的实践与认识, 2009, 39(9): 150-155.
[14]  MAJEED A A, SHAWKA I I. The Dynamics of an Eco-Epidemiological Model with (SI), (SIS) Epidemic Disease in Prey[J]. General Mathematics Notes, 2016, 34(2): 52-74.
[15]  HSIEH Y H, HSIAO C K. Predator-Prey Model with Disease Infection in both Populations[J]. Mathematical Medicine & Biology A Journal of the Ima, 2008, 25(3): 247.
[16]  傅金波, 陈兰荪. 食饵有病的生态-流行病模型的稳定性分析[J]. 华侨大学学报(自然科学版), 2017, 38(2): 266-270. DOI:10.11830/ISSN.1000-5013.201702025
[17]  PAL P J, HAQUE M, MANDAL P K. Dynamics of a Predator-Prey Model with Disease in the Predator[J]. Mathematical Methods in the Applied Sciences, 2015, 37(16): 2429-2450.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133