|
- 2017
基于MF-DCCA的港口与非港口地区PM2.5与NOX互相关性分析
|
Abstract:
针对PM2.5与NOX序列间的互相关性特征,采用多重分形去趋势波动互相关分析法(MF-DCCA),对香港葵涌(港口)和沙田(非港口)地区的PM2.5与NOX浓度序列进行了研究.首先,基于整体数据进行研究,发现港口和非港口地区的PM2.5与NOX的互相关性均具有长程相关性和多重分形特征,港口地区的多重分形特征比非港口地区的要弱.然后,对四季数据进行研究,结果表明港口和非港口地区的PM2.5与NOX的互相关性在四个季节均具有长程相关性和多重分形特征.而且PM2.5和NOX互相关性多重分形特征具有明显的季节变化,春、夏、秋季时港口地区的PM2.5与NOX的互相关性多重分形特征比非港口地区的弱,冬季则相反.
In order to get a better understanding of the cross-correlation between PM2.5 and NOX time series, multifractal detrended cross-correlation analysis (MF-DCCA) was made to study the concentration of PM2.5 and NOX sequences in KwaiChung (a port) or in ShaTin (a non-port area) in Hong Kong. First, an analysis of all the relevant data showed that the cross-correlation between PM2.5 and NOX had long-range correlation and multifractal characteristics either in KwaiChung or in ShaTin, the multifractal characteristics being weaker in KwaiChung than in ShaTin. Then, based on an analysis of the seasonal data, the cross-correlation between PM2.5 and NOX was shown to have long-range correlation and multifractal characteristics in all the four seasons both in KwaiChung and ShaTin. The multifractal characteristics between PM2.5 and NOX exhibited a marked seasonal variation, being weaker in KwaiChung than in ShaTin in spring, summer and autumn, and the opposite was true in winter
[1] | 金赛花, 樊曙先, 王自发, 等. 青海瓦里关地面臭氧浓度的变化特征[J]. 中国环境科学, 2008, 28(3): 198-202. |
[2] | 浦静姣, 张艳, 余琦, 等. 上海地区O3与NO2时空特征数值模拟个例研究[J]. 中国环境科学, 2009, 29(5): 461-468. |
[3] | 姜迪, 李聪. 西安市冬、夏两季PM2.5中碳气溶胶的污染特征分析[J]. 环境监测管理与技术, 2016, 28(1): 36-40. |
[4] | 王强, 戴玄吏, 巢文军, 等. 常州市春季大气PM2.5中金属元素的分析及污染特征[J]. 环境工程学报, 2015, 09: 323-331. |
[5] | SHAN W P, ZHANG J D. Characterizations of Ozone and Related Compounds Under the Influence of Maritime and Continental Winds at a Coastal Site in the Yangtze Delta, Nearby Shanghai[J]. Atmospheric Research, 2010, 97: 26-34. DOI:10.1016/j.atmosres.2010.03.004 |
[6] | HE Y, CHEN S P. A New Approach to Quantify Power-Law Cross-Correlation and Its Application to Commodity Markets Original Research Article[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390: 3806-3814. DOI:10.1016/j.physa.2011.06.013 |
[7] | JIMENEZ-HORNERO F J, JIMENEZ-HORNERO J E, DE RAVE E G. Exploring the Relationship Between Nityogen Dioxide and Ground-Level Ozone by Applying the Joint Multifractal Analysis[J]. Environmental Monitoring and Assessment, 2010, 167(1): 675-685. |
[8] | LOPES R, BETROUNI N. Fractal and Multifractal Analysis: a Review[J]. Medical Image Analysis, 2009, 13: 634-649. DOI:10.1016/j.media.2009.05.003 |
[9] | 李燕燕, 李章平, 熊海灵, 等. 重庆市街道灰尘重金属污染的健康风险评价[J]. 西南大学学报(自然科学版), 2015, 37(2): 18-23. |
[10] | VASSOLE R T, ZEBENDE G F. DCCA Cross-Correlation Coefficient Apply in Time Series of Air Temperature and Air Relative Humidity[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391: 2438-2443. DOI:10.1016/j.physa.2011.12.015 |
[11] | PAVON-DOMINGUEZ P, JIMENEZ-HORNERO F J, DE RAVE E G. Multifractal Analysis of Ground-Level Ozone Concentrations at Urban, Suburban and Rural Background Monitoring Sites in Southwestern Iberian Peninsula[J]. Atmospheric Pollution Research, 2013, 4: 229-237. DOI:10.5094/APR.2013.024 |
[12] | 王星, 郑婷婷, 张程程. 基于联合多重分形的股市量价关系分析[J]. 系统工程, 2009, 27(12): 25-30. DOI:10.3969/j.issn.1001-2362.2009.12.013 |
[13] | 李思川, 史凯, 刘春琼, 等. 香港地区O3与NOx的长期互相关作用[J]. 环境科学与技术, 2014, 37(11): 15-19. |
[14] | 吴琳, 冯银厂, 戴莉, 等. 天津市大气中PM10、PM2.5及其碳组分污染特征分析[J]. 中国环境科学, 2009, 29(11): 1134-1139. DOI:10.3321/j.issn:1000-6923.2009.11.003 |
[15] | RAVI K P, TAO W, HO K F, et al. Characteristics of Summertime PM2.5 Organic and Elemental Carbon in Four Major Chinese Cities: Implications of High Acidity for Water-Soluble Organic Carbon(WSOC)[J]. Atmospheric Environment, 2011, 45(2): 318-325. DOI:10.1016/j.atmosenv.2010.10.021 |
[16] | RUAN Q S, WANG Y. Cross-Correlations Between Baltic Dry Index and Crude Oil Prices[J]. Physica A, 2016, 453: 278-289. DOI:10.1016/j.physa.2016.02.018 |
[17] | ZHOU W X. Finite-Size Effect and the Components of Multifractality in Financial Volatility[J]. Chaos Solitons & Fractals, 2012, 45: 147-155. |