|
- 2018
上海市大气环境中PM2.5与其他污染物相关性研究
|
Abstract:
为研究上海市不同地区的PM2.5污染水平,选取徐汇上师大(市区)和浦东川沙(郊区)两个监测点的PM2.5为研究对象,分析其变化特征及与空气中的PM10,CO,NO2,SO2和O3间的相关性.结果表明:(1)PM2.5与PM10由于存在形态和成因相似而具有很强的相关性;(2)在季节分布上,夏秋季颗粒物浓度低,冬春两季颗粒物浓度高,春季颗粒物浓度低于冬季.PM2.5与PM10在不同季节表现不同,颗粒物的粒径分布特征在一定程度上与监测点周边的污染源及气象因素有关.(3)市区和郊区的PM2.5和PM10浓度都呈双峰性变化,PM2.5与PM10日变化存在相似性.(4)通过逐步回归建立PM2.5的回归模型,结果表明空气中的PM2.5浓度的变化会受到其他污染物的共同作用,不同区域对PM2.5浓度变化贡献大的污染物也有不同.
In order to investigate the pollution level of PM2.5 in different areas of Shanghai, Shanghai Normal University at Xuhui District (an urban area) and Chuansha Town at Pudong New Area (a suburban area) were chosen as the study areas to analyze the characteristics of PM2.5 and the correlation of PM2.5 with PM10, CO, NO2, SO2 and O3. A significant correlation was shown to exist between PM2.5 and PM10 due to their similarities in shape and origin. In the seasonal distribution, the concentration of the particulates was lower in summer and autumn than in winter and spring. PM2.5/PM10 had different behaviors in different seasons, and the size distribution characteristics of the particulates were related to the pollution sources and meteorological factors around the monitoring stations. The concentrations of PM2.5 and PM10 in the urban and the suburban areas showed a bimodal change and PM2.5/PM10 showed a similar pattern in its daily change. A regression model of PM2.5 was established by stepwise regression, and the results showed that the change of PM2.5 concentration was co-affected by other pollutants. The pollutants which were the major contributors to PM2.5 concentration were different in different areas of Shanghai
[1] | 王菊, 李娜, 房春生. 以长春为例研究环境空气中TSP、PM10和PM2.5的相关性[J]. 中国环境监测, 2009, 25(2): 19-21+59. DOI:10.3969/j.issn.1002-6002.2009.02.003 |
[2] | SIV S, FG M, MCM A F, et al. Multiple Linear Regression and Artificial Neural Networks Based on Principal Components to Predict Ozone Concentrations[J]. Environmental Modelling and Software, 2007, 22(1): 97-103. DOI:10.1016/j.envsoft.2005.12.002 |
[3] | M S, N V, A P. Principal Component and Canonical Correlation Analysis for Examining Air Pollution and Meteorological Data[J]. Atmospheric Environment, 1998, 32(6): 1087-1095. DOI:10.1016/S1352-2310(97)00377-4 |
[4] | LU Wei-zhen, HE Hong-di, DONG Li-yun. Performance Assessment of Air Quality Monitoring Networks Using Principal Component Analysis and Cluster Analysis[J]. Building and Environment, 2011, 46(3): 577-583. DOI:10.1016/j.buildenv.2010.09.004 |
[5] | NILTEN, AT SELICI. Investigating the Impacts of Some Meteorological Parameters on Air Pollution in Balikesir, Turkey[J]. Environmental Monitoring and Assessment, 2008, 140(1-3): 267-277. DOI:10.1007/s10661-007-9865-1 |
[6] | HE Hong-di, LU Wei-zhen, XUE Y. Prediction of Particulate Matter at Street Level Using Artificial Neural Networks Coupling with Chaotic Particle Swarm Optimization Algorithm[J]. Building and Environment, 2014, 78(4): 111-117. |
[7] | 陈杨欢, 王杨君, 张苗云, 等. 上海市大气PM2.5时空分布特征[J]. 环境工程学报, 2017, 11(6): 3671-3677. |
[8] | FANG Ming, CHAN C K, YAO Xiao-hong. Managing Air Quality in a Rapidly Developing Nation:China[J]. Atmospheric Environment, 2009, 43(1): 79-86. DOI:10.1016/j.atmosenv.2008.09.064 |
[9] | 陈可雅, 肖卿, 熊万明, 等. 重庆都市功能核心区和都市功能拓展区环境空气质量比较——以沙坪坝区为例[J]. 西南大学学报(自然科学版), 2016, 38(10): 154-160. |
[10] | 黄鹂鸣, 王格慧, 王荟, 等. 南京市空气中颗粒物PM10、PM2.5污染水平[J]. 中国环境科学, 2002, 22(4): 334-337. DOI:10.3321/j.issn:1000-6923.2002.04.012 |
[11] | 罗岳平, 刘孟佳, 甘杰, 等. 长株潭城市环境中PM2.5和O3质量浓度的相关性研究[J]. 安全与环境学报, 2015, 15(4): 313-317. |
[12] | 佘日新. 泉州城区与近郊区PM10和PM2.5时空分布及其相关性研究[J]. 化学工程与装备, 2016(10): 263-264. |
[13] | HASHEMINASSAB S, DAHER N, SAFFARI A, et al. Spatial and Temporal Variability of Sources of Ambient Fine Particulate Matter (PM2.5) in California[J]. Atmospheric Chemistry Physics, 2014, 14(22): 12085-12097. DOI:10.5194/acp-14-12085-2014 |
[14] | 陈林, 熊万明, 李杰, 等. 重庆市沙坪坝区环境空气PM2.5和PM10相关性分析[J]. 西南师范大学学报(自然科学版), 2017, 42(11): 137-143. |
[15] | 杨复沫, 贺克斌, 马永亮, 等. 北京PM2.5浓度的变化特征及其与PM10、TSP的关系[J]. 中国环境科学, 2002, 22(6): 506-510. DOI:10.3321/j.issn:1000-6923.2002.06.006 |
[16] | 陈刚, 刘佳媛, 皇甫延琦, 等. 合肥城区PM10及PM2.5季节污染特征及来源解析[J]. 中国环境科学, 2016, 36(7): 1938-1946. DOI:10.3969/j.issn.1000-6923.2016.07.003 |
[17] | 李晓红, 程慧波, 王莉娜. 兰州市大气颗粒物污染特征分析[J]. 中国环境监测, 2014, 30(3): 43-46. DOI:10.3969/j.issn.1002-6002.2014.03.010 |
[18] | 于瑾, 姜伟, 马兴冠, 等. 大气颗粒物时空分布特征及影响因素[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(6): 1140-1146. |
[19] | WANG Jun, HU Zi-mei, CHEN Yuan-yuan, et al. Contamination Characteristics and Possible Sources of PM10 and PM2.5 in Different Functional Areas of Shanghai, China[J]. Atmospheric Environment, 2013, 68(4): 221-229. |
[20] | ZHANG Feng-ying, LI Xiao-jian, ZHOU Lei, et al. Spatiotemporal Patterns of Particulate Matter (PM) and Associations Between PM and Mortality in Shenzhen, China[J]. Bmc Public Health, 2016, 16(3): 1-11. |
[21] | 张景阳, 潘光友. 多元线性回归与BP神经网络预测模型对比与应用研究[J]. 昆明理工大学学报, 2013, 38(6): 61-67. DOI:10.3969/j.issn.1007-855x.2013.06.010 |
[22] | 王红果, 张建平, 王勇. 华北城市PM2.5、PM10污染水平及两者相关性研究[J]. 河南城建学院学报, 2014, 23(6): 64-67. DOI:10.3969/j.issn.1674-7046.2014.06.015 |