|
- 2018
T-型六角系统的点可区别边染色
|
Abstract:
根据T-型六角系统链H结构的性质以及2度点的排列特点,用π(H)+1种颜色给出了p(≥4)阶H中2度点的点可区别边染色算法,紧接着分析其3度点的染色特点,通过调整个别边的颜色,最终证明H(p≥4)的点可区别色数不超过π(H)+1.另外,当p≤3时,用π(H)种颜色给出具体的点可区别边染色方法,从而证明H的点可区别边色数不超过π(H)+1.
In this paper, according to the properties of the T-shaped hexagonal system H and the arrangement of its 2-degree vertices, we give an algorithm of vertex-distinguishing proper edge coloring of 2-degree vertices on H(p ≥ 4) by using π(H)+1 colors. Then we analyze the color sets of its vertices with degree 3, and the color of some edges incident with those vertices are adjusted. Finally, we obtain that if p ≥ 4, the vertex distinguishing edge chromatic number of H is no more than π(H)+1. In addition, if p ≤ 3, the specific coloring method is given by using π(H) colors. Consequently, we show that the vertex distinguishing edge chromatic number of H is π(H)+1 at most
[1] | BURRIS A C. Vertex-Distinguishing Edge-Colorings[D]. Memphis: Memphis State University, 1993. http://dl.acm.org/citation.cfm?id=264118 |
[2] | LIU B, LIU G. Vertex-Distinguishing Edge Colorings of Graphs with Degree Sum Conditions[J]. Graphs and Combinatorics, 2010, 26(6): 781-791. DOI:10.1007/s00373-010-0949-2 |
[3] | CRUZ R, GIRALDO H, RADA J. Extremal Values of Vertex-Degree Topological Indices Over Hexagonal Systems[J]. MATCH Commun Math Comput Chem, 2013, 70(2): 501-512. |
[4] | YAO B, CHEN X E, SHAN S L. On Equitable Vertex Distinguishing Edge Colorings of Trees[J]. Acta Mathematica Scientia, 2013, 33(3): 621-630. DOI:10.1016/S0252-9602(13)60025-9 |
[5] | CHEN A, XIONG X, LIN F. Explicit Relation Between the Wiener Index and the Edge-Wiener Index of the Catacondensed Hexagonal Systems[J]. Applied Mathematics & Computation, 2016, 273: 1100-1106. |
[6] | DOBRYNIN A A, GUTMAN I, KLAV?AR S, et al. Wiener Index of Hexagonal Systems[J]. Acta Applicandae Mathematicae, 2002, 72(3): 247-294. DOI:10.1023/A:1016290123303 |
[7] | BURRIS A C, SCHELP R H. Vertex-Distinguishing Proper Edge-Colorings[J]. Journal of Graph Theory, 1997, 26(2): 73-82. DOI:10.1002/(ISSN)1097-0118 |
[8] | BERROCAL L, OLIVIERI A, RADA J. Extremal Values of Vertex-Degree-Based Topological Indices Over Hexagonal Systems with Fixed Number of Vertices[J]. Applied Mathematics & Computation, 2014, 243(2): 176-183. |