全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

非定常不可压Navier-Stokes方程基于欧拉格式的两水平变分多尺度方法
A Finite Element Variational Multiscale Method Based on the Backward Euler Scheme for the Time-Dependent Navier-Stokes Equations

DOI: 10.13718/j.cnki.xdzk.2018.09.013

Keywords: Navier-Stokes方程, 两水平法, 向后欧拉格式, 误差估计
Navier-Stokes equation
, two-grid method, backward Euler scheme, error estimate

Full-Text   Cite this paper   Add to My Lib

Abstract:

主要研究了基于两个高斯积分的两水平全离散有限元变分多尺度方法.该方法对每个时间步长首先在粗网格上求解稳定的非线性Navier-Stokes系统,然后在细网格上求解稳定的线性问题去校正粗网格上的解.基于向后欧拉格式的时间离散推导的速度的误差估计关于时间是一阶收敛的.数值实验验证了理论的正确性和方法的有效性.
In this paper, we mainly study a fully discrete finite element variational multiscale method based on two local Gaussian integrations for the time-dependent Navier-Stokes equations. A feature of the method is that a stabilized nonlinear Navier-Stokes system is first solved on a coarse grid, and then a stabilized linear problem is solved on a fine grid to correct the coarse grid solution at each time step. Based on the backward Euler scheme for temporal discretization, we derive error bound of the approximate velocity which is first-order in time. Numerical experiments verify the correctness of the theory and the effectiveness of the method

References

[1]  GLOWINSKI R. Finite Element Methods for Incompressible Viscous Flow[M]. Amsterdam: Elsevier Science Publisher, 2003.
[2]  SHANG Y Q. A Two-Level Subgrid Stabilized Oseen Iterative Method for the Steady Navier-Stokes Equations[J]. Journal of Computational Physics, 2013, 233(1): 210-226.
[3]  罗尧, 杨一都. 传输特征值混合方法[J]. 贵州师范大学学报(自然科学版), 2017, 35(2): 38-45. DOI:10.3969/j.issn.1004-5570.2017.02.007
[4]  HECHT F. New Development in FreeFem++[J]. Journal of Numerical Mathematics, 2012, 20(3-4): 251-265.
[5]  ZIENKIEWICZ O C, TAYLOR R C, NIETHARASU P. The Finite Element Method[M]. New York: Springer, 2008.
[6]  LIU Q F, HOU Y R. A Two-Level Defect-Correction Method for Navier-Stokes Equations[J]. Bulletin of the Australian Mathematical Society, 2010, 81(3): 442-454. DOI:10.1017/S0004972709000859
[7]  SHANG Y Q. Error Analysis of a Fully Discrete Finite Element Variational Multiscale Method for Time-Dependent Incompressible Navier-Stokes Equations[J]. Numerical Methods for Partial Differential Equations, 2013, 29(6): 2025-2046.
[8]  MAUBACH J. Local Bisection Refinement for N-Simplicial Grids Generated by Reflection[J]. SIAM Journal on Numerical Analysis, 1995, 16(1): 210-227.
[9]  HOOD P, TAYLOR C. A Numerical Solution of the Navier-Stokes Equations Using the Finite Element Technique[J]. Computers & Fluids, 2017, 1(1): 73-100.
[10]  FORTIN M. Calcul Numérique des Ecoulements Fluides De Bingham et des Fluides Newtoniens Incompressible Par des Méthodes d'eléments Finis[M]. Paris: Doctoral Thesis, 1972.
[11]  CASE M, ERVIN V, LINKE A, et al. A Connection Between Scott-Vogelius Elements and Grad-Div Stabilization[J]. SIAM Journal on Numerical Analysis, 2011, 49(4): 1461-1481. DOI:10.1137/100794250
[12]  唐秀丽, 王修庆. 三维空间中Euler方程的中心羌分方法[J]. 贵州师范大学学报(自然科学版), 2016, 34(2): 71-75. DOI:10.3969/j.issn.1004-5570.2016.02.015
[13]  GIRAULT V, RAVIART P A. Finite Element Approximation of the Navier-Stokes Equations[M]. Berlin: Springer-Verlag, 1979.
[14]  HEYWOOD J G, RANNACHER R. Finite Element Approximation of the Nonstationary Navier-Stokes Problem Ⅳ:Error Analysis for Second-Order Time Discretization[J]. SIAM Journal on Numerical Analysis, 1990, 27(2): 353-384. DOI:10.1137/0727022

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133