全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

无界域上非自治Reaction-Diffusion方程的后向紧动力学
The Backward Compact Dynamics for Non-Autonomous Reaction-Diffusion Equations on Unbounded Domains

DOI: 10.13718/j.cnki.xdzk.2018.09.010

Keywords: 非自治动力系统, 后向紧动力, cut-off函数, 无界域
non-autonomous dynamical system
, backward compact dynamics, cut-off function, unbounded domain

Full-Text   Cite this paper   Add to My Lib

Abstract:

在非自治外力项是后向λ-缓增有限的和后向尾部渐近趋于零的假设条件下,运用cut-off函数、后向Granwall不等式、后向Granwall-type不等式获得了无界域上非自治Reaction-Diffusion方程拉回吸引子的后向紧性.
The backward compactness of attractors for non-autonomous reaction-diffusion equations on unbounded domains is obtained under the conditions of both backward λ-tempered finiteness and backward tail-smallness for the non-autonomous force by using a cut-off function, a backward Granwall inequality and a backward Granwall-type inequality

References

[1]  YIN J Y, GU A H, LI Y R. Bankwards Compact Attrators for Non-Autonomous damped 3D Navier-Stoks Equations[J]. Dynamics of PDE, 2017, 14(2): 201-218.
[2]  WANG B X. Sufficient and Necessary Criteria for Existence of Pullback Attractors for Non-Compact Random Dynamical Systems[J]. J Differ Equ, 2012, 253(5): 1544-1583. DOI:10.1016/j.jde.2012.05.015
[3]  CARVALHO A N, LANGA J A, ROBINSON J C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems[M]. New York: Springer, 2013.
[4]  SONG H T. Pullback Attractors of Non-Autonomous Reaction-Diffusion Equations in[J]. J Differ Equ, 2010, 249(10): 2357-2376. DOI:10.1016/j.jde.2010.07.034
[5]  佘连兵, 王仁海. 非自治Reaction-Diffusion方程后向紧的拉回吸引子的存在性[J]. 四川师范大学学报(自然科学版), 2017, 40(6): 1-5.
[6]  YIN J Y, LI Y R, GU A H. Backwards Compact Attractors and Periodic Attractors for Non-Autonomous Damped Wave Equations on an Unbounded Domain[J]. Comput Math Appl, 2017, 74(4): 744-758. DOI:10.1016/j.camwa.2017.05.015
[7]  LI Y R, GU A H, LI J. Existence and Continuity of Bi-Spatial Random Attractors and Application to Stochastic Semi-Linear Laplacian Eequations[J]. J Differ Equ, 2015, 258(2): 504-534. DOI:10.1016/j.jde.2014.09.021
[8]  LI Y R, YIN J Y. A Modified Proof of Pullback Attractors in a Sobolev Space for Stochastic Fitz Hugh-Nagumo Equations[J]. Disrete Contin Dyn Syst, 2016, 21(4): 1203-1223. DOI:10.3934/dcdsb
[9]  TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]//Applied Mathematical Science Series. Berlin: Springer-Verlag, 1988.
[10]  LUKASZEWICZ G. On Pullback Attractors in for Non-Autonomous Reaction-Diffusion Equations[J]. Nonlinear Anal, 2010, 73(10): 350-357.
[11]  CUI H Y, LANGA J A, LI Y R. Regularity and Structure of Pullback Attractors for Reaction-Diffusion Type Systems Without Uniqueness[J]. Nonlinear Anal, 2016, 140: 208-235. DOI:10.1016/j.na.2016.03.012
[12]  LI Y R, WANG R H, YIN J Y. Bankward Compact Attrators for Non-Autonomous Benjsmin-Bona-Mahony Equations on Unbounded Channels[J]. Discrete Contin Dyn Syst B, 2017, 22(7): 2569-2586. DOI:10.3934/dcdsb

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133