全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于跟踪—关联模块的多目标跟踪方法研究
A Tracking-Association Module-Based Study of Multi-Object Tracking Methods

DOI: 10.13718/j.cnki.xdzk.2018.04.020

Keywords: 多目标跟踪, 关联模型, 颜色直方图, K最近邻法, 轨迹片段, 身份转换
multi-object tracking
, association module, color histogram, K-nearest neighbor algorithm, trace fragment, identity change

Full-Text   Cite this paper   Add to My Lib

Abstract:

多目标跟踪面临的最大挑战是身份转换问题,其由目标物体间的相互遮挡造成.针对该问题,提出一种基于跟踪模型和关联模型的多目标跟踪方法.首先在跟踪模块针对每一个跟踪个体采用粒子滤波器还原其各自轨迹片段,并计算可信因子评估遮挡程度;然后在关联模块,将人体分割为头部、躯干和腿三部分,将人的面貌分为前侧和背侧两种,利用HSV颜色直方图方法提取各部分特征描述符,利用K最近邻方法探测个体之间的匹配程度,进行再次识别以实现轨迹片段的融合.实验结果表明,同传统的方法相比,提出的算法可有效避免由于遮挡引起的身份转换问题,且目标检测准确率有较大提高,检测准确率达到90.5%.
The most important challenge faced by algorithms designed for multi-object tracking is the identity switches due to occlusions and interactions between the same tracked objects. For the problem, the paper proposes a new multi-object tracking method based on the tracking module and the association module. Through the tracking module, the trajectory segments are recovered for each tracked individual based on the use of dedicated particle filters. In the association module, the body of the individual is segmented into three parts: heads, torso and legs, and his/her appearance is classified into two poses: front and back. Then, the HSV color histogram method is utilized to extract the feature descriptors of each part, and the K nearest neighbor algorithm is used to detect the match degree between individuals, which is re-identified to achieve the fusion of each trajectory segment. The experiment results demonstrate that compared with the traditional method, the proposed algorithm can effectively avoid the problem of identity transformation caused by occlusion, and achieve a detection accuracy as high as 90.5%

References

[1]  单东晶. 基于压缩感知的复杂背景下目标跟踪算法研究[D]. 北京: 北京大学, 2013, 6. http://d.wanfangdata.com.cn/Thesis/Y2500538
[2]  POSSEGGER H, MAUTHNER T, ROTH PM. Occlusion Geodesics for Online Multi-Object Tracking[J]. Computer Vision and Pattern Recognition, 2014, 9(7): 1306-1313.
[3]  BAE S H, YOON K J. Robust Online Multi-Object Tracking Based on Tracklet Confidence and Online Discriminative Appearance Learning[J]. Computer Vision and Pattern Recognition, 2014, 23(7): 1218-1225.
[4]  王松林, 项欣光. 基于压缩感知的多特征加权目标跟踪算法[J]. 计算机应用研究, 2014, 31(3): 929-932.
[5]  闫河, 刘婕, 杨德红, 等. 基于特征融合的粒子滤波目标跟踪新方法[J]. 光电子激光, 2014, 25(10): 1990-1999.
[6]  SHIMADA A, ARITA D, TANIGUCHI R. Dynamic Control of Adaptive Mixture of Gaussians Background Model in Video and Signal Based Surveillance [C]. IEEE International Conference on AVSS, 2006, 11.
[7]  XIE Y H, HAN X W, HE Y G. Information Technology in Multi-Object Tracking Based on Bilateral Structure Tensor Corner Detection for Mutual Occlusion[J]. Advanced Materials Research, 2014, 977(7): 502-506.
[8]  GENDRIN C, FURTADO H, WEBER C. Monitoring Tumor Motion by Real Time 2D/3D Registration During Radiotherapy[J]. Radiotherapy and Oncology Journal, 2012, 102(2): 274-280. DOI:10.1016/j.radonc.2011.07.031
[9]  宁多彪, 张兵. 基于信息矩阵的自适应卡尔曼目标跟踪滤波器[J]. 西南大学学报(自然科学版), 2016, 38(7): 172-178.
[10]  GOTTSCHLICH C, SCHUHMACHER D. The Shortlist Method for Fast Computation of the Earth Mover Distance and Finding Optimal Solutions to Transportation Problems[J]. Plos One, 2014, 9(10): 110214. DOI:10.1371/journal.pone.0110214
[11]  BERNARDIN K, STIEFELHAGEN R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics[J]. Eurasip Journal on Image & Video Processing, 2008, 48(1): 1-10.
[12]  刘定通. 复杂背景下视频运动目标检测与跟踪算法研究[D]. 成都: 电子科技大学, 2016, 6. http://cdmd.cnki.com.cn/Article/CDMD-10614-1015708908.htm
[13]  张纪宽, 彭力, 陈志勇. 动态复杂背景下的智能视频监控系统的设计与实现[J]. 计算机测量与控制, 2016, 24(7): 100-104.
[14]  郇二洋, 李睿. 基于自适应特征融合的粒子滤波目标跟踪算法[J]. 计算机科学, 2015, 42(2): 316-318. DOI:10.11896/j.issn.1002-137X.2015.02.067
[15]  DING H, ZHANG W. Multi-Target Tracking with Occlusions Via Skeleton Points Assignment[J]. Neurocomputing, 2012, 83(6): 165-175.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133