|
- 2018
鸡源致病性大肠杆菌的分离鉴定及耐药性分析
|
Abstract:
分离鉴定某蛋鸡养殖场病鸡的病原并对病原的部分重要生物学特性进行研究.通过病理剖检、细菌和菌落形态观察、分子生物学鉴定、生化试验和动物回归试验,确定从8只病鸡分离的21株病原菌为大肠杆菌.对30种抗菌药物的药物敏感性试验分析表明,这些菌株存在广泛的多重耐药,特别是对青霉素G、阿莫西林、卡那霉素、甲氧嘧啶、复方新诺明、四环素、氯霉素和万古霉素耐药严重,对头孢哌酮、头孢曲松、头孢他啶、氨曲南、阿米卡星、妥布霉素较为敏感.对超广谱β-内酰胺酶(ESBL)表型及基因型分析可知,所有菌株均为产ESBL大肠杆菌,其主要的ESBL耐药基因为blaTEM.
In order to provide reference for integrated disease prevention and control of hen farms, a research was made to isolate and identify pathogens from a layer farm in Chongqing. Pathological examination, bacterial and clonal morphological examination, molecular biological identification, biochemical tests and animal regression test of 21 strains isolated from eight sick chickens on the farm showed that they were all Escherichia coli strains. Susceptibility test of 30 antimicrobials showed that all the isolates were multi-drug resistant. They were highly resistant to penicillin G, amoxicillin, kanamycin, sulfameter, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol and vancomycin, and fairly sensitive to cefoperazone, ceftriaxone, ceftazidime, aztreonam, amikacin and tobramycin. The phenotype and genotype analyses of the extended spectrum beta-lactamases (ESBLs) showed that the isolates were all ESBLs-producing E. coli and the main ESBL resistant gene was blaTEM
[1] | 陈溥言. 兽医传染病学[M]. 5版. 北京: 中国农业出版社, 2006. |
[2] | CHEN X, ZHANG W, YIN J, et al. Escherichia coli Isolates from Sick Chickens in China: Changes in Antimicrobial Resistance Between 1993 and 2013[J]. Vet J, 2014, 202(1): 112-115. DOI:10.1016/j.tvjl.2014.06.016 |
[3] | WU H, XIA S, BU F, et al. Identification of Integrons and Phylogenetic Groups of Drug-Resistant Escherichia coli from Broiler Carcasses in China[J]. Int J Food Microbiol, 2015, 211: 51-56. DOI:10.1016/j.ijfoodmicro.2015.07.004 |
[4] | JIMéNEZ-BELENGUER A, DOMéNECH E, VILLAGRá A, et al. Antimicrobial Resistance of Escherichia coli Isolated in Newborn Chickens and Effect of Amoxicillin Treatment During Its Growth[J]. Avian Pathol, 2016, 45(6): 501-517. |
[5] | OLSEN R H, BISGAARD M, L?HREN U, et al. Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Poultry: a Review of Current Problems, Illustrated with Some Laboratory Findings[J]. Avian Pathol, 2014, 43(3): 199-208. DOI:10.1080/03079457.2014.907866 |
[6] | HU Q, TU J, HAN X, et al. Development of Multiplex PCR Assay for Rapid Detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica Simultaneously from Ducks[J]. J Microbiol Methods, 2011, 87(1): 64-69. DOI:10.1016/j.mimet.2011.07.007 |
[7] | STüRENBURG E, KüHN A, MACK D, et al. A Novel Extended-Spectrum β-Lactamase CTX-M-23 with a P167T Substitution in the Active-Site Omega Loop Associated with Ceftazidime Resistance[J]. Journal of Antimicrobial Chemotherapy, 2004, 54(2): 406-409. DOI:10.1093/jac/dkh334 |
[8] | BERT F, BRANGER C, LAMBERT-ZECHOVSKY N. Identification of PSE and OXA β-Lactamase Genes in Pseudomonas aeruginosa Using PCR-Restriction Fragment Length Polymorphism[J]. J Antimicrob Chemother, 2002, 50(1): 11-18. DOI:10.1093/jac/dkf069 |
[9] | PASTERáN F, RAPOPORT M, PETRONI A, et al. Emergence of PER-2 and VEB-1a in Acinetobacter baumannii Strains in the Americas[J]. Antimicrob Agents Chemother, 2006, 50(9): 3222-3224. DOI:10.1128/AAC.00284-06 |
[10] | PAI H, LYU S, LEE J H, et al. Survey of Extended-Spectrum β-Lactamases in Clinical Isolates of Escherichia coli and Klebsiella pneumoniae: Prevalence of TEM-52 in Korea[J]. J Clin Microbiol, 1999, 37(6): 1758-1763. |
[11] | YAN J J, TSAI S H, CHUANG C L, et al. OXA-Type Beta-Lactamases Among Extended-Spectrum Cephalosporin-Resistant Pseudomonas aeruginosa Isolates in a University Hospital in Southern Taiwan[J]. J Microbiol Immunol Infect, 2006, 39(2): 130-134. |
[12] | MELLATA M. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends[J]. Foodborne Pathog Dis, 2013, 10(11): 916-932. DOI:10.1089/fpd.2013.1533 |
[13] | JOHNSON T J, LOGUE C M, JOHNSON J R, et al. Associations Between Multidrug Resistance, Plasmid Content, and Virulence Potential Among Extraintestinal Pathogenic and Commensal Escherichia coli from Humans and Poultry[J]. Foodborne Pathog Dis, 2012, 9(1): 37-46. DOI:10.1089/fpd.2011.0961 |
[14] | CHEN Y P, LEE S H, CHOU C H, et al. Detection of Florfenicol Resistance Genes in Riemerella anatipestifer Isolated from Ducks and Geese[J]. Veterinary Microbiology, 2012, 154(3): 325-331. |
[15] | SHAH A A, HASAN F, AHMED S, et al. Characteristics, Epidemiology and Clinical Importance of Emerging Strains of Gram-Negative Bacilli Producing Extended-Spectrum β-Lactamases[J]. Res Microbiol, 2004, 155(6): 409-421. DOI:10.1016/j.resmic.2004.02.009 |
[16] | HIROI M, MATSUI S, KUBO R, et al. Factors for Occurrence of Extended-Spectrum β-Lactamase-Producing Escherichia coli in Broilers[J]. J Vet Med Sci, 2012, 74(12): 1635-1637. DOI:10.1292/jvms.11-0479 |
[17] | CELENZA G, PELLEGRINI C, CACCAMO M, et al. Spread of BlaCTX-M-Type and blaPER-2 β-Lactamase Genes in Clinical Isolates from Bolivian Hospitals[J]. J Antimicrob Chemother, 2006, 57(5): 975-978. DOI:10.1093/jac/dkl055 |
[18] | VOURLI S, GIAKKOUPI P, MIRIAGOU V, et al. Novel GES/IBC Extended-Spectrum β-Lactamase Variants with Carbapenemase Activity in Clinical Enterobacteria[J]. FEMS Microbiol Lett, 2004, 234(2): 209-213. |
[19] | HORTON R A, RANDALL L P, SNARY E L, et al. Fecal Carriage and Shedding Density of CTX-M Extended-Spectrum β-Lactamase-Producing Escherichia coli in Cattle, Chickens, and Pigs: Implications for Environmental Contamination and Food Production[J]. Appl Environ Microbiol, 2011, 77(11): 3715-3719. DOI:10.1128/AEM.02831-10 |