|
- 2017
曲边矩形和曲顶柱体区域上的温度控制
|
Abstract:
主要研究了曲边矩形及曲顶柱体上温度的边界控制.应用原有的反步控制方法,根据相应条件导出核方程,进而得到核方程的解和控制律,并证明闭环系统是指数稳定的.
This paper studies the temperature control on rectangular curved edges and the curly top cylinder. By applying the backstepping method, based on corresponding conditions, we derive a kernel equation and get its solution and control law, and then prove that the closed-loop system is exponentially stable
[1] | MIROSLAV K, ANDREY S. Adaptive Boundary Control for Unstable Parabolic PDEs-Part I: Lyapunov Design[J]. IEEE Transactions on Automatic Control, 2008, 53(7): 1575-1591. DOI:10.1109/TAC.2008.927798 |
[2] | MIROSLAV K, ANDREY S. Boundary Control of PDEs: a Course on Backstepping Design[M]. Philadelphia: SIAM, 2008: 13-63. |
[3] | MOJTABA I, STEVAN D. Backstepping Output-Feedback Control of Moving Boundary Parabolic PDEs[J]. European Journal of Control, 2015(21): 27-35. |
[4] | E F, J L and S B D. On the Controllability of a Free-Boundary Problem for the 1D Heat Equation[J]. Systems & Control Letters, 2016(87): 29-35. |
[5] | MIROSLAV K. Control of an Unstable Reaction-Diffusion PDE with Long Input Delay[J]. System & Control Letters, 2009, 58(11): 773-782. |
[6] | ANDREY S, MIROSLAV K. Adaptive Control of Parabolic PDEs[M]. New Jersey: Princeton University Press, 2010: 52-54. |
[7] | JIE Q, RAFAEL V and MIROSLAV K. Multi-Agent Deployment in 3-D via PDE Control[J]. IEEE Transactions on Automatic Control, 2015, 60(4): 891-906. DOI:10.1109/TAC.2014.2361197 |
[8] | 张渭滨.数学物理方程[M].北京:清华大学出版社, 2007: 92-93. |