|
- 2017
半群Sn(k)的秩
|
Abstract:
设Singn是[n]上的奇异变换半群.对任意1≤k≤n-1, 研究半群
Let Singn be a singular transformation semigroup on [n]. For an arbitrary integer 1≤k≤n-1, the rank and idempotent rank of the semigroup Sn(k)={α∈Singn:?x∈[n], x≤k
[1] | BARNES G, LEVI I. On Idempotent Ranks of Semigroups of Partial Transformations[J]. Semigroup Forum, 2005, 70(1): 81-96. DOI:10.1007/s00233-004-0142-0 |
[2] | 赵平, 游泰杰, 徐波. 半群CPOn的秩[J]. 西南大学学报(自然科学版), 2011, 33(6): 106-110. |
[3] | HOWIE J M. An Introduction to Semigroup Theory [M]. London:Academic Press, 1976. |
[4] | 赵平. 半群PK-(n, r)的幂等元秩[J]. 西南师范大学学报(自然科学版), 2012, 37(10): 41-44. DOI:10.3969/j.issn.1000-5471.2012.10.011 |
[5] | SOMMANEE W, SANWONG J. Rank and Idempotent Rank of Finite Full Transformation Semigroups with Restricted Range[J]. Semigroup Forum, 2013, 87(1): 230-242. DOI:10.1007/s00233-013-9467-x |
[6] | 张传军, 赵平. 半群On(k)的秩[J]. 数学的实践与认识, 2014, 44(9): 243-247. |
[7] | GOMES G M S, HOWIE J M. On the Ranks of Certain Semigroups of Order-Preserving Transformations[J]. Semigroup Forum, 1992, 45(1): 272-282. DOI:10.1007/BF03025769 |
[8] | GARBA G U. On the Idempotent Ranks of Certain Semigroups of Order-Preserving Transformations[J]. Portugal Math, 1994, 51(2): 185-204. |
[9] | GOMES G M S, HOWIE J M. On the Ranks of Certain Finite Semigroups of Transformations[J]. Math Proc Camb Phil Soc, 1987, 101(3): 395-403. DOI:10.1017/S0305004100066780 |
[10] | ZHAO P. On the Ranks of Certain Semigroups of Orientation Preserving Transformations[J]. Communications in Algebra, 2011, 39(11): 4195-4205. DOI:10.1080/00927872.2010.521933 |
[11] | FERNANDES V H, SANWONG J. On the Ranks of Semigroups of Transformations on a Finite Set with Restricted Range[J]. Algebra Colloquium, 2014, 21(3): 497-510. DOI:10.1142/S1005386714000431 |
[12] | TINPUN K, KOPPITZ J. Relative Rank of the Finite Full Transformation Semigroup with Restricted Range[J]. Acta Mathematica Universitatis Comenianae, 2016(2): 347-356. |
[13] | ZHAO P, FERNANDES V H. The Ranks of Ideals in Various Transformation Monoids[J]. Communications in Algebra, 2015, 43(2): 674-692. DOI:10.1080/00927872.2013.847946 |