全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

具有变时滞的高阶随机Hopfield神经网络在有限时间内的控制同步
Finite-Time Control Synchronization for High-Order Stochastic Hopfield Neural Networks with Time-Varying Delays

DOI: 10.13718/j.cnki.xdzk.2018.11.011

Keywords: 高阶Hopfield神经网络, 随机扰动项, 变时滞, 有限时间内同步, p-范数
high-order Hopfield neural network
, stochastic perturbation term, time-varying delay, finite time synchronization, p-norm

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了具有变时滞的高阶随机Hopfield神经网络在有限时间内的控制同步.通过李雅普诺夫函数,有限时间内稳定性理论,随机微分方程理论和一些不等式方法,基于p-范数得到了新的有限时间内同步的充分条件.本文结论是对之前相关结论的推广.
In this paper, we study the finite-time control synchronization for high-order stochastic Hopfield neural networks with time-varying delays. Through the Lyapunov function, the finite time stability theory, the theory of stochastic differential equation and some inequality methods, some new and useful sufficient conditions on the in finite-time synchronization are obtained based on p-norm. The conclusion of this paper is the generalization of the previous related conclusions

References

[1]  HOPFIELD J J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities[J]. Proc Natl Acad Sci, 1982, 79(8): 2554-2558. DOI:10.1073/pnas.79.8.2554
[2]  PAJARES G, GUIJARRO M, RIBEIRO A. A Hopfield Neural Network for Combining Classifiers Applied to Textured Images[J]. Neural Networks, 2010, 23(1): 144-153. DOI:10.1016/j.neunet.2009.07.019
[3]  LIU D R. Cloning Template Design of Cellular Neural Networks for Associative Memories[J]. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications, 1997, 44(7): 646-650. DOI:10.1109/81.596948
[4]  LIU B, LU W L, CHEN T P. Neural Networks Letter:Global Almost Sure Self-Synchronization of Hopfield Neural Networks with Randomly Switching Connections[J]. Neural Networks, 2011, 24(3): 305-310. DOI:10.1016/j.neunet.2010.12.005
[5]  CAI G L, SHAO H J, YAO Q. A Linear Matrix Inequality Approach to Global Synchronization of Multi-Delay Hopfield Neural Networks with Parameter Perturbations[J]. Chinese Journal of Physics, 2012, 50(1): 50-63.
[6]  KOSMATOPOULOS E B, CHRISTODOULOU M A. Structural Properties of Gradient Recurrent High-Order Neural Networks[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing Home Popular Current Issue, 1995, 42(9): 592-603. DOI:10.1109/82.466645
[7]  WANG T B, ZHAO S W, ZHOU W N, et al. Finite-Time Master-Slave Synchronization and Parameter Identification for Uncertain Lurie Systems[J]. ISA Transactions, 2014, 53(4): 1184-1190. DOI:10.1016/j.isatra.2014.03.016
[8]  LIU X Y, JIANG N, WANG M, et al. Finite-Time Stochastic Stabiliza-Tion for BAM Neural Networks with Uncertainties[J]. Journal of the Franklin Institute, 2013, 350(8): 2109-2123. DOI:10.1016/j.jfranklin.2013.05.027
[9]  YU J, HU C, JIANG H J, et al. Exponential Synchronization of Cohen-Grossberg Neural Networks via Periodically Intermittent Control[J]. Neurocomputing, 2011, 74(10): 1776-1782. DOI:10.1016/j.neucom.2011.02.015
[10]  GAN Q T, XU R, YANG P H. Exponential Synchronization of Stochastic Fuzzy Cellular Neural Networks with Time Delay in the Leakage Term and Reaction-Diffusion[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(4): 1862-1870. DOI:10.1016/j.cnsns.2011.08.029
[11]  ZHANG W B, TANG Y, FAN J A, et al. Neural Networks Letter:Stability of Delayed Neural Networks with Time-Varying Impulses[J]. Neural Networks, 2012, 36: 59-63. DOI:10.1016/j.neunet.2012.08.014
[12]  RYAN E P. Finite-Time Stabilization of Uncertain Nonlinear Planar Systems[J]. Dynamics and Control, 1991, 1(1): 83-94. DOI:10.1007/BF02169426
[13]  WANG Y J, SHI X M, ZUO Z Q, et al. On Finite-Time Stability for Nonlinear Impulsive Switched Systems[J]. Nonlinear Analysis:Real World Applications, 2013, 14(1): 807-814. DOI:10.1016/j.nonrwa.2012.08.003
[14]  HU C, YU J, JIANG H J. Finite-Gime Synchronization of Delayed Neural Networks with Cohen-Grossberg Type Based on Delayed Feedback Control[J]. Neurocomputing, 2014, 143: 90-96. DOI:10.1016/j.neucom.2014.06.016
[15]  HUANG J J, LI C D, HUANG T W, et al. Finite-Time Lag Synchronization of Delayed Neural Networks[J]. Neurocomputing, 2014, 139(13): 145-149.
[16]  DU Y H, ZHONG S M, ZHOU N, et al. Exponential Stability for Stochastic Cohen-Grossberg BAM Neural Networks with Discrete and Distributed Time-Varying Delays[J]. Neurocomputing, 2014, 127: 144-151. DOI:10.1016/j.neucom.2013.08.028

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133