|
- 2018
空间异质环境下带交错扩散项的Lotka-Volterra模型分岔解的稳定性
|
Abstract:
主要研究空间异质环境下带交错扩散项的Lotka-Volterra方程组分岔解的局部渐近稳定性.由分岔方向及细致的谱分析,证明了分岔平衡解是局部渐近稳定的.
In this paper, we concern with the local asymptotical stability of the bifurcating solution for the Lotka-Volterra system with cross diffusion in a spatially heterogeneous environment. By applying a detailed spectral analysis based on the bifurcating direction we prove that the bifurcating steady state solution is locally asymptotically stable
[1] | DU Y, PENG R, WANG M. Effect of a Protection Zone in the Diffusive Leslie Predator-Prey Model[J]. J Differential Equations, 2009, 246(10): 3932-3956. DOI:10.1016/j.jde.2008.11.007 |
[2] | DU Y, SHI J P. A Diffusive Predator-Prey Model with a Protection Zone[J]. J Differential Equations, 2006, 229(1): 63-91. DOI:10.1016/j.jde.2006.01.013 |
[3] | DU Y, SHI J P. Some Recent Results on Diffusive Predator-Prey Models in Spatially Heterogeneous Environment[J]. Fields Inst Comm, 2006(48): 1-41. |
[4] | 徐茜, 赵烨. 带两个趋化参数的趋化模型非常数平衡解的存在性[J]. 西南师范大学学报(自然科学版), 2014, 39(11): 11-16. |
[5] | SHI J P. Persistence and Bifurcation of Degenerate Solutions[J]. J Funct Anal, 1999, 169(2): 494-531. DOI:10.1006/jfan.1999.3483 |
[6] | HUTSON V, LOU Y, MISCHAIKOW K. Spatial Heterogeneity of Resources Versus Lotka-Volterra Dynamics[J]. J Differential Equations, 2002, 185(1): 97-136. DOI:10.1006/jdeq.2001.4157 |
[7] | HUTSON V, LOU Y, MISCHAIKOW K. Convergence in Competition Models with Small Diffusion Coefficients[J]. J Differential Equations, 2005, 211(1): 135-161. DOI:10.1016/j.jde.2004.06.003 |
[8] | HUTSON V, LOU Y, MISCHAIKOW K, et al. Competing Species Near a Degenerate Limit[J]. SIAM J Math Anal, 2006, 35(2): 453-491. |
[9] | HUTSON V, MISCHAIKOW K, POLácIK P. The Evolution of Dispersal Rates in a Heterogeneous Time-Periodic Environment[J]. J Math Biol, 2001, 43(6): 501-533. DOI:10.1007/s002850100106 |
[10] | KUTO K. Bifurcation Branch of Stationary Solutions for a Lotka-Volterra Cross-Diffusion System in a SpatiallyHeterogeneous Environment[J]. Nonlinear Analysis:Real World Applications, 2009, 10(2): 943-965. DOI:10.1016/j.nonrwa.2007.11.015 |
[11] | KIELH?FER H. Bifurcation Theory:An Introduction with Applications to PDEs[M]. New York: Springer, 2004. |