|
- 2018
混合广义伽马分布的渐进性质
|
Abstract:
讨论了独立同混合广义伽马分布随机变量序列的规范化最大值的极限分布及其点点收敛速度.
In this note, we discuss the asymptotic behaviors of independent and identically distributed (i.i.d.) extremes for mixed generalized gamma distributions (MGGD) and their pointwise convergence rate
[1] | LEADBETTER M R, LINDGREN G, ROOTZEN H. Extremes and Related Properties of Random Sequences and Processes[M]. New York: Springer, 1983: 5-7. |
[2] | RESNICK S. Extreme Value, Regular Variation, and Point Processes[M]. New York: Springer, 1987: 26-67. |
[3] | STACY E W. A Generalization of Gamma Distribution[J]. Annals of Mathematics Statistics, 1962, 33(3): 1187-1192. DOI:10.1214/aoms/1177704481 |
[4] | DU L, CHEN S. Asymptotic Properties for Distributions and Densities of Dxtremes from Generalized Gamma Distribution[J]. Journal of the Korean Statistical Society, 2015, 45(2): 188-198. |
[5] | WINGO D R. Computing Maximum-Likelihood Parameter Estimates of the Generalized Gamma Distribution by Numerical Root Isolation[J]. IEEE Transactions on Reliability, 1987, 36(5): 586-590. |
[6] | 潘立先. 四参数广义伽马分布函数拟合居民收入分布[D]. 成都: 西南财经大学, 2014. |
[7] | PENG Z, TONG B, NADARAJAH S. Tail Behavior of the General Error Distribution[J]. Econometrica, 2009, 38(11): 1884-1892. |