全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

非正规循环子群的正规化子皆极大的两类有限可解群
Two Finite Solvable Groups in Which the Normalizer of Some Non-Normal Subgroups is Maximal

DOI: 10.13718/j.cnki.xdzk.2018.12.012

Keywords: 极大子群, 正规子群, 正规化子
maximal subgroup
, normal subgroup, normalizer

Full-Text   Cite this paper   Add to My Lib

Abstract:

子群的正规性和有限群的结构有密切的关系,而正规化子作为子群正规性的一种度量对有限群结构的影响自然也很大.极大子群是有限群的一类重要子群.利用某些子群的正规化子的极大性研究有限群的结构.具体研究了群G的阶被p整除的非正规循环子群的正规化子皆极大的有限可解群,以及非正规p-子群和{pq}-子群的正规化子均极大的有限可解群.得到这两类群的一些性质,并对这两类群的结构给出了刻画.
The normality of subgroups is closely related to the structure of finite groups, and the normalizer of subgroups, which is a measure of the normality of subgroups, has a significant influence on their structure. On the other hand, the maximal subgroup is an important kind of subgroup of finite groups. So it is reasonable to investigate the structure of a group by using normalizers of some kind of subgroups. In this paper, we study the solvable groups in which the normalizer of cyclic subgroups whose order is divided by p is maximal in G. We also study the solvable groups in which every non-normal p-subgroup and {p, q}-subgroup have a maximal normalizer in G. Some good properties are given for the above two types of group, and we also describe the structure of the two types of group

References

[1]  HUPPERT B. Endliche Gruppen Ⅰ[M]. Berlin: Springer-Verlag, 1967.
[2]  BIANCHI M, MAURI A G B, HAUCK P. On Finite Groups with Nilpotent Sylow-Normalizers[J]. Archiv der Mathematik, 1986, 47(3): 193-197. DOI:10.1007/BF01191993
[3]  蹇祥, 吕恒. 具有极大正规化子的有限群[J]. 西南大学学报(自然科学版), 2016, 38(12): 56-60.
[4]  ORMEROD E A. Finite p-Groups in Which Every Cyclic Subgroup is 2-Subnormal[J]. Glasg Math J, 2002, 44: 443-453. DOI:10.1017/S0017089502030094
[5]  CAO J J, GUO X Y. Finite Solvable Groups in Which the Normalizer of Every Non-Normal Cyclic Subgroup is Maximal[J]. Journal Group Theory, 2014, 17(4): 671-687.
[6]  PARMEGGIANI G. On Finite p-Groups of Odd Order with Many Subgroups 2-Subnormal[J]. Comm Algebra, 1996, 24(8): 2707-2719. DOI:10.1080/00927879608542651
[7]  徐明曜. 有限群导引(上册)[M]. 北京: 科学出版社, 1999.
[8]  BALLESTER-BOLINCHES A, SHEMETKOV L A. On Normalizers of Sylow Subgroups in Finite Groups[J]. Siberian Mathematical Journal, 1999, 40(1): 1-2. DOI:10.1007/BF02674284
[9]  MANN A. Finite Groups with Maximal Normalizers[J]. Illinois J Math, 1968, 12: 67-75.
[10]  KOSVINTSEV L F. Finite Groups with Maximal Element Centralizers[J]. Matematicheskie Zametki, 1973, 13(4): 577-580.
[11]  ANTONOV V A. Locally Finite Groups with Maximal Centralizers of Element[J]. Matematicheskie Zametki, 1991, 49(3): 145-146.
[12]  CAO J J, GUO X Y. Finite Non-Solvable Groups in Which the Normalizer of Every Non-Normal Cyclic Subgroup is Maximal[J]. Commun Algebra, 2018, 46(1): 325-334.
[13]  ZHANG J P. Sylow Numbers of Finite Groups[J]. J Algebra, 1995, 176(1): 111-123. DOI:10.1006/jabr.1995.1235

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133